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peso della neve azioni permanenti

F, ed F, positive, F, ed F, negative

Modulo 2

ELEMENTI DI STATICA

Forze e momenti; le condizioni di equilibrio nel piano e nello spazio; vincoli e reazioni vincolari; il concetto
di trave; caratteristiche di sollecitazione; travi reticolari, sistemi di travi.

Obiettivi didattici

« fornire strumenti per I’analisi quantitativa del comportamento delle strutture;

* individuare uno schema statico (che ci permettera di definire precisamente le condizioni necessarie
affinche un sistema di corpi, siano in equilibrio) e un modello meccanico della costruzione;

* applicare ad essi le leggi dell’equilibrio;

¢ individuare il comportamento statico di alcune forme strutturali maggiormente ricorrenti nell’architettura.

Descrizione attraverso modello fisico matematico

Fisica — meccanica — statica

La fisica studia degli oggetti, con gli strumenti della matematica

- Algebra simbolica (calcolo letterario)

- Sistemi di equazioni algebriche

- Trigonometria fondamentale (funzioni trigonometriche fondamentali e inverse)
- Studi di funzione polinomiali

LE FORZE

Sinonimo carichi: azioni — carichi sulle costruzioni / azioni sulle costruzioni

Es. azione del vento: flusso d'aria che si muove con velocita V, e che esprime sulle pareti, (facce esterne) un
campo di pressione.

Es. azione della neve, peso del manto nevoso che va ad accumularsi sulla copertura dell'architettura

Es. carico indotto dalle persone che abitano un'architettura — sovraccarichi variabili

Distinguiamo

forza sollecitante: forza che esprime un carico (azione)

forza reagente: reagisce alle forze sollecitanti e garantisce l'equilibrio della trave (reazione)

Es. azioni permanenti (sezione trasversale di un muro volto ad evitare che il terreno frani), in rosso forze
sollecitanti (richiedono prestazione meccanica), in blu forze reagenti (che garantiscono reazioni muro
controterra).

Le architetture sono suscettibili ad un grande numero di azioni, indotte dall'ambiente circostante o indotte
dalla funzione che I'architettura svolge (carico di persone laddove la funzione sia residenziale).

Il concetto di forza € recente, viene dato da Newton nel XVII secolo d.C.
Ogni causa che tende a modificare lo stato di quiete o di moto rettilineo uniforme di un corpo dotato di massa.
(non definisce la forza in quanto tale, ma definisce la forza in base agli effetti che induce)

- n ~ F
F=m-a - v
m
Termini sormontati da freccia: quantita vettoriali
Termini senza freccia: quantita scalari
Quantita scalare: quantita che puo essere compiutamente descritta da un numero
Grandezze vettoriali: 1. Intensita o modulo |F|
2. Direzione
3. Punto di applicazione Q
4. Verso
5.
Retta d'azione r del vettore: direzione + punto di applicazione

Unita di misura nel Sistema Internazionale F=m -E
N]- kg ] [m/s]

Convenzioni (1): forze e angoli

Sistema di riferimento cartesiano generale positivo / destrorso di Cartesio: formato da tre assi, tante
quante le dimensioni dello spazio fisico, fra di loro ortogonali, versati dall'unghia delle tre dita.

pollice: asse x

indice: asse y

medio: asse z

Qualunque forza-vettore espressa nello spazio, se ha la direzione in comune con asse X/y/z possiamo
sostituire la direzione della freccia (verso) con segno +/- a seconda che il verso sia concorde con I'asse di
riferimento avente medesima direzione (positivo) o discorde (negativo).
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11 carico di questi operai si pud esprimere attraverso il concetto di forza?

Un carico concentrato, chiamato anche carico puntiforme, ¢ una forza che agisce su una porzione molto
ridotta di superficie, assunta puntiforme.

Fare riferimento alla superficie dove gli operai poggiano (rosso), posso poi notare che quella superficie ¢
piccola rispetto all'intero Empire State Building. — posso quindi ridurre questa piccola superficie ad un
punto di applicazione, e calcolarne la forza attraverso la formula, supponendo che il peso di un operaio sia
80kg, ¢ la forza di accelerazione che conosciamo grazie alla forza di gravita.

Un carico uniformemente distribuito ¢ una forza applicata su una superficie avente dimensioni finite,
come una linea (blu) o un area (verde), e distribuita sulla stessa secondo una certa legge che definisce la
variazione di quel carico lungo la linea o l'area.

Composizione di due forze sulla stessa retta d'azione
Primo sistema di forze elementari (F1 ed F2) — compongono sistema che si dice piano, perché hanno un

vincolo da rispettare: entrambe hanno la medesima retta d'azione (tratteggiata, R1)
Trovare la forza che risulta dalla somma vettoriale di questi due vettori — Risultante: forza equivalente al
sistema di forze iniziale, ovvero che ha lo stesso effetto/risultato (effetti cinematici definiti da Newton).

Se le due forze iniziali giacciono entrambe sulla retta d'azione R1, anche la risultante giacera sulla retta
d'azione R1; e il suo modulo, lo potremmo stabilire facendo riferimento alla somma algebrica dei moduli F1
ed F2, seganti dal verso con la convenzione di segno.

I: indice generico che potra assumere valorida 1 an

Forza equilibrante: forza agente sulla retta d'azione R1 (E) che ha il medesimo modulo di R ma verso
opposto, e per definizione, ¢ quella forza che a sua volta sommata ad R dara come risultato vettore nullo.
Forza che aggiunta a F1 e F2, garantira che il sistema di forze F1 F2 ed E sia una causa nulla di effetti —
effetto nullo. Il mio corpo dotato di massa non abbandona il suo stato di quiete o moto rettilineo uniforme.

Composizione di due forze sulla stessa retta d'azione: un'applicazione
Fune: segmento nero che giace su una retta infinita R

Su questa retta agiscono le due forze espresse dai due uomini che tirano la fune

Uomo 1 tira con forza F1 (300N)

Uomo 2 tira con forza F2 (-200N)

La risultante R sara pari a F1 + F2 =300 + (-200) = 100N

Effetto cinematico della risultante: 1'uvomo 1 trascina I'nvomo 2 verso destra.

Per equilibrare il sistema di forze, l'vomo 2 dovra chiamare 1'uvomo blu

Il modulo di E, dovra essere pari al modulo di R e il verso di dovra essere opposto al verso di R:
|[E|=R|=100N — l'equilibrante annulla I'effetto della risultante

Sistemi di forze complanari: composizione di 2 forze concorrenti in un punto
Retta d'azione R1 ed R2, appartengono allo stesso piano

Come otteniamo la risultante con la statica grafica?

Attraverso problema formalizzato da Roberval e Vrignon (XVII sec)

Regola del parallelogramma: si tratta di traslare le due forze dal loro punto di applicazione sulle rette R1
ed R2 nel punto di intersezione delle due rette medesime, dove sara necessariamente applicata la forza
risultante. Dobbiamo far passare per I'estremo di F'l una retta parallela alla retta d'azione di F'2 e viceversa
passare per l'estremo di F'2, una retta parallela, alla retta d'azione di F'l.

Per costruzione, le due rette d'azione, e le due di costruzione, formano un parallelogramma.

Facciamo passare una terza retta di costruzione che passa per il punto di intersezione iniziale e per il vertice
opposto del parallelogramma. La diagonale staccata esprime il modulo della risultante, il verso ¢ quello che
va dal punto di applicazione al verso opposto del parallelogramma.

Trangolo delle forze

Risultante ed equilibrante di due forze concorrenti in un punto
E — forza equilibrante: il triangolo delle forze ¢ “chiuso”
R — forza risultante: il triangolo delle forze ¢ “aperto”

Equilibranti di una forza secondo due direzioni: un'applicazione alla capriata

Studio del nodo in cui converge la testa del setto murario, la catena e il puntone

Catena soggetta a forza T e puntone soggetto a forza P

Vogliamo capire qual ¢ I'equilibrante che deve esprimere il muro (che annulla gli effetti)

T passera per il punto di intersezione delle rette d'azione delle due forze Pe T

Costruisco il triangolo, con ipotenusa P' (sforzo del puntone), e che avra un cateto che la forza T'
L'equilibrante dovra necessariamente completare il triangolo — chiuso

E': forza di pari modulo, pari direzione, pari verso, la posso applicare nella freccia blu

Il muro quindi, per reggere la capriata dovra esprimere una forza la cui retta d'azione é verticale
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(Ripasso lezione precedente)

Descrizione quantitativa del comportamento meccanico delle strutture

Carico/azione

Elemento modellistico fondamentale — forza (definita sulla scorta del contributo di Newton, come
grandezza vettoriale (punto di applicazione, modulo/intensita, direzione, verso),
Comporre/scomporre forze attraverso l'ausilio della statica grafica

caso elementare di sistema di forze piano con medesima retta d'azione — risultante ed equilibrante
Regola parallelogramma, e del triangolo delle forze

Sistemi di forze agenti su rette d'azione complanari: composizione di n forze non correnti in un punto
Molteplici punti di intersezione al finito (rette non parallele)

Conosciamo il punto di applicazione della risultante dato che le rette si incontrano nello stesso punto? No
Non possiamo utilizzare un approccio analogo al triangolo delle forze

Dobbiamo intanto determinare il punto di applicazione della risultante, ovvero dell'equilibrante

Possiamo immaginare di applicare il metodo del parallelogramma, considerando del sistema di n forze, due
a priori, (F1 ed F2). Ho traslato F1 ed F2 nel punto di intersezione delle rispettive rette d'azione, (F'l e F'2),
costruisco il parallelogramma delle forze, e determino compiutamente la risultante (R1,2).

A questo punto posso considerare un sistema di forze equivalente, non pitt composto da quattro forze, ma
solamente da 3 (Risultante1,2 - F3 — F4).

Posso procedere per via iterativa, quindi iterando/ripetendo lo stesso approccio, considerando la risultante
R1,2 ed F3. Ripeto la medesima operazione andando a traslare le due forze che sto considerando nel nuovo
punto di intersezione delle rette d'azione, e ricostruisco il corrispondente parallelogramma delle forze.
Ottengo la nuova forza risultante R1,2,3.

Ripeto lo stesso procedimento con la risultante R1,2,3 ed F4. Determino la risultante R (R1,2,3,4).

Sistemi di forze agenti su rette d'azione complanari: composizione di n forze concorrenti in un punto
Vincolare sistema di forze iniziali ad una condizione

Numero a piacere di forze, sistema piano, ma le rette d'azione di tutte le forze si incontrano in unico punto di
intersezione al finito.

In questo caso conosciamo a priori il punto di applicazione della forza risultante — punto di intersezione
comune delle quattro rette d'azione (punto rosso).

L'approccio iterativo ¢ ancora valido, perche generale

I1 vincolo del sistema di forze ci da la possibilita, analogamente al sistema di due sole forze, di figurarci un
altro approccio alternativo — costruire non piu un triangolo delle forze, ma un poligono delle forze.
Collego tutte le forze in sequenza, e completo il poligono con la risultante R’

Se il poligono risultera aperto, perche non circuitante, avriemmo determinato graficamente la forza risultante.
Le due costruzioni grafiche portano alla medesima soluzione — ¢ verificata l'unicita della soluzione

Osservazioni sulla costruzione del poligono delle forze
Proprieta commutativa (medesima somma scalare e vettoriale): variando l'ordine degli addendi, il risultato

della somma non cambia. Questa proprieta vale anche per la somma vettoriale, quindi anche per la statica
grafica — 1'ordine con cui compongo le forze non fa cambiare il risultato.
L'ordine con cui si costruisce il poligono ¢ ininfluente sul risultato finale.

Scomposizione di una forza secondo due direzioni
Operazione duale della composizione di forze

Data una forza, intendo determinarne le componenti (risultante) di due forze che ignoro, se non nelle loro
rette d'azione.

Dati del problema: conosco la forza F, tangente sulla sua retta d'azione e applicata nel punto (di
applicazione); mi propongo di determinare le componenti della forza F.

Cercare due componenti di una forza, non conosce I'unicita della soluzione. Perché la soluzione sia unica, €
necessario specificare che di F voglio cercare due componenti, che dovranno essere due forze agenti su due
rette d'azione definite per la loro direzione e per uno dei punti in cui passano, in particolare il punto di
applicazione della forza F.

Operazione inversa della composizione di due forze, quindi possiamo applicare in maniera inversa lo
stesso procedimento — regola del parallelogramma.

Costruiremo il parallelogramma, i cui lati saranno staccati sulle rette r1 ed r2 e su due rette di costruzione
parallele, I'una ad r1, l'altra ad 12, ed entrambe queste due rette passanti per il punto finale del vettore che
rappresenta F. La forza F per costruzione ¢ una diagonale del parallelogramma

sara sufficiente considerare i due lati del parallelogramma che hanno in comune il punto di applicazione F. I
due lati avranno una lunghezza proporzionale alla forza F1 ed F2 che saranno versate dal punto di
applicazione di F all'altro vertice del parallelogramma che definisce il segmento medesimo.

Abbiamo determinato le componenti di F. Invece di determinare la risultante di due forze, abbiamo
determinato le due forze che compongono una forza data.



La prima applicazione di questa applicazione grafica si deve a Leonardo da Vinci, che due secoli prima
della definizione di forza data da Newton, gia schizzo in uno dei suoi codici questo problema: Leonardo
disegna un corpo dotato di massa (grosso blocco di pietra) che doveva essere innalzato, alla quota della
testata di un setto murario delle mura difensive di Milano.

Lui si figura di innalzare questo corpo, che sappiamo esprimere una forza, attraverso un sistema di due funi
che conoscono due rimandi con due carrucole.

Si pone il problema di sapere dove era utile collocare le due carrucole in maniera che i due operai tirassero
le funi e non fossero costretti a fare sforzi eccessivamente diversi l'uno con I'altro.

Altro problema che si pone: capire se le forze che dovranno esercitare i due operai aumenteranno in modulo
man mano che il grave viene sollevato.

Esiste una relazione (evidenza in forma grafica) tra I'angolo definito delle due rette d'azione e il modulo
delle due componenti che su queste rette d'azione agiscono.

Scomposizione di una forza secondo due direzioni
Sistema cartesiano destrorso positivo

Consideriamo forza F e ci proponiamo di scomporre questa forza F, ma le due rette d'azione elle
componenti, oltre che passare necessariamente per il punto di applicazione della forza, avranno direzioni che
saranno le medesime direzioni degli assi che definiscono il piano in cui il nostro problema ¢ stato posto.
Cercheremo una componente lungo una retta d'azione parallela all'asse x e una componente di F su una retta
d'azione avente la medesima direzione dell'asse y.; e per questa ragione queste due componenti le
chiameremo Fx ed Fy.

Costruzione grafica: parallelogramma delle forze, che avra come angoli interni, quattro angoli congruenti
pari a 90°, perche il sistema di riferimento ¢ cartesiano ortogonale.

In virta del fatto che prima ¢ un rettangolo delle forze, la forza iniziale F, definisce due triangoli rettangoli.
La direzione della retta d'azione di F rispetto alla direzione X la qualifico attraverso 1'angolo Alpha.
Possiamo determinare analiticamente le componenti di F

Due relazioni fondamentali che legano un cateto e l'ipotenusa di un triangolo rettangolo attraverso la
funzione trigonometrica dell'angolo opposto adiacente interno, quindi riconosco Fy (vettore che ha un
modulo pari alla lunghezza del cateto), cateto che ¢ uguale all'ipotenusa F per il seno dell'angolo opposto o
— Fy=F * sin(a)

Analogamente riconosco in Fx un vettore il cui modulo sara pari alla lunghezza dell'altro cateto, uguale
all'ipotenusa F per il coseno dell'angolo adiacente interno o

— Fx=F * cos(a)

Verso di Fy concorde con l'asse y del sistema di riferimento
Verso di Fx concorde con I'asse x del sistema di riferimento

Questa operazione di scomposizione ci consente di applicare la convenzione sul segno di una forza, anche
ad una forza che non abbia la medesima direzione degli assi di un sistema di riferimento.

(allegato lavagna)

Come determinare positivita/negativita della forza F in figura se non segue la direzione di uno degli assi del
sistema cartesiano?

E' sufficiente considerare due rette d'azione di due componenti di F che siano 1'una parallela all'asse X, e
l'altra parallela all'asse Y, costruire un rettangolo delle forze, staccare le due componenti

Determino modulo componente Fx: cateto = ipotenusa (F) * cos(a)

Determino verso vettore: +Fcos(a)

Determino modulo e verso componente Fy: cateto = ipotenusa (F) * sin(a)

Determino verso vettore: -Fsin(o)

Scomposizione di una forza secondo due direzioni: un'applicazione
Capriata sui cui puntoni sono gia state poste delle travi secondarie (sezione evidenziata in grigio scuro)

appoggiate all'estradosso del puntone (che ha tutti gli effetti ¢ un piano inclinato).

Su queste travi cammina un operaio. Mi devo preoccupare dell'eventuale scorrimento della trave secondaria,
dall'alto in basso, sul puntone, che ¢ l'effetto cinematico di una causa, che non puo che essere una forza,
anch'essa avente retta d'azione parallela all'asse del puntone, trascurando ogni forza di attrito?

Forza peso dell'operaio ha una retta d'azione verticale. Come puo una forza che ha pura retta d'azione
verticale, dare luogo ad una componente nella direzione d'asse del puntone?

E se questa componente esiste, qual ¢ il suo modulo? E il suo verso?

Modellizziamo il problema: ho una retta d'azione che ¢ inclinata rispetto all'orizzontale di un angolo @
(stessa inclinazione fra I'asse del puntone e 'asse della catena) su questa retta pongo la mia trave secondaria,
e sullo spigolo della mia trave secondaria faccio passare una retta che ¢ retta d'azione della forza peso P
dell'omino. — Voglio determinare le componenti di P lungo la direzione 2 (parallela all'asse del puntone)
e una direzione 1 (perpendicolare all'asse del puntone).
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Traslo la forza P in maniera che abbia il punto di applicazione nel punto di intersezione delle due rette, i due
angoli corrispondenti sono detti entrambi a, traccio il rettangolo delle forze e definisco le due componenti
Pl eP2.

Adesso le posso esprimere analiticamente: P1=P-cos(a) , P2=P- sin(a)

Se attribuiamo un modulo a P: 600N, e un'ampiezza ad a: 30° — P1=512N , P2=300N

Risponde alle domande in termini quantitativi — abbiamo un valore

N.B. Vettorialmente P ¢ la risultante delle componenti P1 e P2, ma questo non implica che la somma dei
moduli sia pari al modulo della forza iniziale.

FORZE E MOMENTI
Determinare forza risultante di un sistema di forze agenti su rette d'azione complanari, aventi la medesima
direzione ma distinte, cio¢ rette, parallele fra di loro.

Momento di una forza (quantita vettoriale): si definisce momento di una forza rispetto ad un asse
ortogonale alla retta di azione della forza stessa, il vettore: M = b*F

Effetti di un momento: perturbare lo stato di un corpo dotato di massa, e di indurre una variazione della sua
velocita angolare valutata rispetto ad un punto di riferimento (il suo centro di rotazione).

Retta d'azione: il vettore M agisce sull'asse

Braccio b: distanza tra la retta d'azione della forza, e 1'asse attorno a cui valutiamo la rotazione indotta dal
momento. Elemento staccato dalle due rette, su una retta che deve essere necessariamente perpendicolare,
tanto alla retta d'azione di F, quanto alla retta d'azione di M.

11 polo Q: l'intersezione tra 'asse del vettore momento e il piano a cui appartengono la forza F e il braccio b.
Particolare punto della retta d'azione di M , traccia della retta d'azione di M sul piano definito dalla retta
d'azione della forza F e della retta d'azione del braccio b.

Intensita o modulo: [M| = |b| * |F|

Unita di Misura: (N)(m)

Verso: “regola della mano destra”

Distanza retta polo: distanza staccata su quella retta che passa per il polo e che ¢ perpendicolare con la retta
d'azione della forza.

Es. La porta ¢ un corpo dotato di massa. Aprirla significa indurre una rotazione di questo corpo dotato di
massa, intorno ad un asse che in questo caso ¢ verticale e passa per i cardini della porta.

Stato iniziale di quiete. Come faccio ad indurre, quale effetto della mia forza, una velocita angolare espressa
in radianti al secondo (ampiezza dell'angolo percorsa nell'unita di tempo).

Il momento non dipende esclusivamente del modulo della forza (applico 10kg forza alla maniglia)

Se I'effetto dipende dal punto di applicazione (retta d'azione della forza), anche la causa dipende dalla retta
d'azione della forza, ma non in assoluto. Dalla collocazione relativa della retta d'azione della forza, rispetto
all'asse attorno il quale voglio valutare il momento.

Il momento non puo essere solo funzione della forza, ma anche il braccio.

Se il momento ¢ un vettore, come lo rappresentiamo graficamente?

® Per distinguerlo dalla rappresentazione grafica che usiamo per le forze, abitualmente il vettore
momento ¢ espresso come un segmento rettilineo versato, perd con una doppia freccia, per
indicare che ¢ determinato da due vettori (forza e braccio).

e Un'altra possibile rappresentazione ¢ quella di utilizzare un vettore curvilineo segnato in rosso,
con una freccia che indica il verso. Il fatto che sia curvilineo sta a suggerire che quel momento
avra un effetto rotazionale sul corpo dotato di massa, e che questa rotazione avverra nello spazio o
nel punto polo Q nel piano, e ci racconta piu intuitivamente 'effetto del vettore momento.

E' possibile definire il verso del vettore momento facendo affidamento alla binarieta del segno + o -?

Si, ma dovremmo usare una convenzione diversa da quella delle forze.

Facciamo riferimento alla terna cartesiana ortogonale destrorsa positiva, definita da assi X,Y,Z; nel
momento in cui il vettore momento sia espresso con vettore rettilineo e doppia freccia, quindi ne
conosciamo la retta d'azione, che coincide con uno degli assi del sistema di riferimento, allora possiamo dire
che il momento ¢ positivo nel momento in cui il doppio vettore momento ha un verso che coincide con il
verso positivo dell'asse di riferimento.

Regola della mano destra o del cacciavite

Se viceversa facciamo riferimento al vettore curvilineo che esprime graficamente il momento, usiamo
ancora una volta la mano destra, orientiamo le quattro dita non opponibili della mano, curvate, e con le
unghie versate, con il verso analogo al vettore curvilineo, tiro fuori il pollice opponibile, e vedo che il
pollice non potra che orientarsi con 'asse che completa la terna destrorsa dell'asse cartesiano e devo solo
verificare che abbia 1'unghia versata come il verso dell'asse che completa la terna, in questo caso si dice
positivo, se ha verso opposto si dice negativo.
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Quello che abbiamo visto nello spazio, lo rivediamo nel piano
11 momento nel piano xy
Ci posizioniamo nel piano definito dalla retta d'azione, in questo caso

® la retta d'azione (direzione) del momento avra sempre una direzione coincidente con l'asse Z
(perpendicolare al piano)
® laretta d'azione sara sostituita dal pelo (traccia della retta d'azione sul piano)
e Intensita: M| = [F|*|b]
® Verso: guardando il piano dalla parte del verso positivo dell'asse Z,
il verso ¢ positivo se ¢ antiorario, ¢ negativo se ¢ orario
— scorciatoia che non sostituisce la regola della mano destra, ma la particolarizza nel caso in cui fossimo

nel piano perpendicolare alla retta d'azione del momento e lo stessimo guardando dal verso positivo del
piano medesimo in un sistema di riferimento destrorso positivo.

Caso 1

Terna destrorsa positiva. Piano XY, ho un chiodo da legno piantato in una tavola, ¢ un martello da
carpentiere che sto usando per estrarre il chiodo dalla tavola. Per farlo il carpentiere applica una forza F, con
retta d'azione che giace nel piano XY, e con questa forza applicata all'estremo del manico per massimizzare
il braccio (distanza tra retta d'azione della forza e il punto di cui voglio valutare il momento — testa del
martello. Ruotera la testa del martello secondo un vettore momento, curvilineo (in figura).

Prendo la mano destra, oriento le quattro dita in maniera che le unghie siano equiverse al verso atteso
dell'effetto cinematico. Il pollice ¢ equiverso rispetto all'asse Z o ha verso opposto? E' equiverso, quindi quel
momento ¢ sicuramente positivo.

Caso 2

Piano XY. Voglio sollevare il corpo dotato di massa (blocco di calcestruzzo armato) usando un piede di
porco. Applico una forza verticale all'estremo del manico dello strumento, questo ruotera intorno al polo.
L'effetto cinematico ¢ rappresentato dal vettore curvilineo.

Prendo la mano destra, pongo le dita con le unghie versate come il verso che mi attendo dall'effetto
cinematico. Il pollice questa volta ha verso opposto rispetto all'asse Z, quindi posso affermare che si tratta di
un momento negativo.

Es. astratto (figura lavagna)

Consideriamo sistema di riferimento cartesiano destrorso ortogonale positivo

Consideriamo una retta d'azione f su cui agisce una forza F e mi pongo di valutare il momento espresso da
questa forza. Voglio determinare M di F,Q

Per prima cosa devo definire il braccio (distanza euclidea tra il polo e la retta d'azione della forza)

Devo tracciare per Q, una retta che sia perpendicolare ad f (n)

E identifico il punto di intersezione. Distanza tra i due punti ¢ b.

Il modulo di M sara pari a F+b

Disegno il vettore curvilineo e utilizzando la regola della mano destra scopro che il pollice ¢ versato come
l'asse Z

Lo stesso esercizio lo ripetiamo per un altro polo

intendo valutare il momento di F, questa volta in P

Il braccio (b') — il momento avra modulo F-b'

Regola della mano destra — pollice verso opposto all'asse Z

Non solo il modulo del momento dipende dalla posizione

del polo, ma a parita di verso della forza, anche il verso del momento dipende dalla posizione del polo
Motivo per cui la convenzione di verso sul momento, non ha nulla a che vedere direttamente, con la
convenzione di verso sulla forza.

(figura lavagna)
11 fatto che la forza abbia segno positivo, non implica che il momento abbia segno positivo.
Le due convenzioni sono distinte.

Teorema di Varignon
Enunciato: Dato un sistema di forze, agenti su rette d'azione complanari, e dato un polo Q, anch'esso parte

del problema iniziale dato, allora il momento risultante rispetto al polo Q, equivale al momento della forza
risultante (il momento risultante equivale al momento della risultante)
Al di la di una proposizione articolata, questi due momenti sono piuttosto differenti.

Caso: sistema di forze agenti su rette d'azione complanari, date le quattro forze, a il polo Q
Siamo in grado di definire i quattro bracci delle quattro forze F1, F2, F3, F4, nominate b1, b2, b3, b4
Per ogni forza siamo in grado di determinarne il momento.



La somma vettoriale dei quattro momenti espressi nelle quattro forze, risultera nel momento risultante (che
ha lo stesso risultato cinematico rotazionale dei quattro momenti singoli combinati insieme).
b, Q Come faccio a valutarli?
Tl S, F1- bl (momento della forza F1 rispetto a Q — positivo)
" F2 - b2 (momento della forza F2 rispetto a Q — positivo)
F3 - b3 (momento della forza F3 rispetto a Q — negativo)
- F4 - b4 (momento della forza F4 rispetto a Q — positivo)
La somma algebrica dei quattro moduli equivale al momento risultante, che risulta dalla combinazione di
quattro momenti.

F1°- bl + F2: b2 -F3: b3 + F4: b4 =R * bR (momento della forza risultante, per convenzione positivo)
Il momento risultante (a sinistra del termine di uguaglianza) equivale al momento che la forza risultante
del sistema di forze, esprime rispetto a Q in ragione del suo braccio (bR)

i=n=4

Forma compatta — EF, ‘b, =R-b,
=1

Se tutto € noto (F, b, R, bR) — questa formulazione matematica ¢ una pura identita
Sarebbe piu utile che uno dei termini fosse un incognita, non sia noto, perché non sarebbe piu un'identita,
diventerebbe un equazione che ci permettera di determinare univocamente l'incognita.

Nel nostro caso l'incognita ¢ R

L'equazione mi permette di mettere in evidenza R e determinarla.

Sistema di forze complanari: composizione di n forze parallele

Agenti su rette d'azione che giacciono tutte sullo stesso piano, in questo caso XY, tutte parallele fra di loro
Non abbiamo nessuno strumento, con la statica grafica, che ci permette di determinare univocamente la
risultante di questo sistema di forze. Sicuramente possiamo valutarne l'intensita/modulo.

Perché l'intensita di R, sara pari alla somma algebrica dei moduli segnati. Assumendo di considerare quale
verso positivo quello della retta d'azione R3, posso scrivere che F1 + F2 + F3 — F4 = |R|

So a priori quale sara la direzione della risultante R, perch¢ se tutte le forze hanno la medesima direzione,
allora anche la risultante, non potra che avere quella direzione.

Cio che non conosco ¢ la retta d'azione della risultante R (il suo punto di applicazione)

R potra agire su una qualunque retta, appartenente al fascio improprio di rette, a cui appartengono R1, R2,
R3, R4

R:? Pongo polo Q, posso valutare i bracci di tutte e quattro le forze, e in questo caso tutte le forze
esprimeranno dei momenti di verso positivo.

M1Q + M2Q + M3Q + M4Q = MRQ (momento espresso dalla risultante R, rispetto a Q) analogamente
F1'b1 + F2'b2 + F3-b3 + F4:-b4 =R - bR = (F1 + F2 + F3 - F4) - bR

forma com : F-b,
patta: . F-b,+F, b, +F ‘b, +F, b, 2

(sommatoria dei momenti / b, = =

sommatoria delle forze) R+F +F -F

Definisco univocamente bR, posso tracciare il vettore R, perché agira su una retta d'azione che distera
rispetto a Q, di un braccio bR.

Forza-Peso

Caso particolare di forza, vale la definizione di Newton

L'accelerazione che contribuisce ad indurre la forza nel corpo dotato di massa M non ¢ un'accelerazione
qualsiasi, ma ¢ un'accelerazione di gravita.

E dato che l'accelerazione, nell'espressione m*g ¢ l'unica quantita vettoriale, la forza-peso ereditera
dall'accelerazione gravitazionale, la direzione e il verso.

L'accelerazione di gravita ¢ diretta dal nostro corpo dotato di massa, al baricentro della Terra, e il verso
andra dal corpo dotato di minor massa, al corpo dotato di maggior massa.

Il modulo dell'accelerazione di gravita dipende dalla massa del pianeta (sulla Terra g: 9,81 m/s?)

Es. Se ho un corpo dotato di massa, pari a 1Kg, allora il modulo della forza peso sara dato da

1Kg - 9,81 ms? — 9,81 N~ 10N

Direzione verticale, verso il basso, punto di applicazione (dentro il baricentro del corpo dotato di massa)
Baricentro per definizione: punto di applicazione della forza-peso

— relazione tra I'unitad di misura tradizionale e quella adottata dal S.I. 1Kgf =10 N

m=1 [Kg]

L =574 mm
P,=29N

Y
P,=1N . . . .
i : Il baricentro di masse puntiformi — Problema
i =100 it ) . . . . . . .
S Due corpi elementari dotati di massa (due sfere che nel piano XY sono rappresentati come circonferenze)
A parita d'intensita di massa volumica, ¢ di accelerazione di gravita, I'una avra una forza-peso maggiore

G
%:@ © PL:29N  P2: IN
:

P1
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2.9-(574 +100)+1-100 =3.9-(x+100)

R=P,+P,
P,-(L+d)+Pz>d =(P,+P2)~(x+d)

Pl-(L+d)+Pl-d=R-(x+d}

1954 .6 +100 = 3.9 -x+390

_ 1954.6 +100 -390
3.9

P,=700 N

P

=427mm

fa
1

X1

R:IP.|+IP.|= 700+300-1000N

X--Pl . 3004 _ agoo M[w] _
1000 4000 [N]

[ o v e

1

Queste due masse, che possiamo immaginare puntiformi, assimilabili ad un punto, distano 1'una dall'altra in
direzione X, di una lunghezza L pari a 574 mm, e ad unire fisicamente i due corpi € una bacchetta di ferro.
Determinare la risultante delle forze peso associate a queste masse puntiformi, perché una volta conosciuta
la forza risultante, potremmo anche definire la forza equilibrante.

Potremmo definire in quale punto sospendere questo sistema con una fune, che fara in modo che questa sorta
di bilancere asimmetrico non ruoti.

Poniamo un polo Q qualsiasi (sulla retta su cui giacciono le masse)

Polo Q non coincide né con il baricentro della massa 1 né con il baricentro della massa 2, ma dista dal
baricentro della massa 2 una distanza d.

ipotizzo una retta d'azione per la forza risultante R, la distanza che separa la retta d'azione di R ¢ il
baricentro della massa 2, la chiamo x

x ed L-x sono complementari ad L

Applicazione teorema di Varignon

Il momento rispetto a q della forza peso P1, + il momento rispetto a Q della forza peso P2 = momento
espresso dalla risultante R rispetto al polo Q, dove le quantita tra parentesi sono binomi che esprimono i
bracci della forza P1 e della forza R rispetto a Q; mentre il braccio di P2 ¢ un monomio.

Modulo segnato di R deve essere pari ai moduli segnati della somma algebrica di P1 ¢ P2

I versi li assumo come entrambi positivi

Posso risolvere il sistema di equazioni in forma simbolica, oppure posso sostituire ai simboli i valori
numerici dei moduli.

X =427 mm — la distanza tra la retta dazione di r e il baricentro della massa 2

R ¢ completamente nota e posso definire 1'equilibrante di R — forza blu

Esercizio
Massa 1 e massa 2 diverse, quindi diverse sono le loro forze-peso,
Portare massa 2 nel vuoto fino a che lo spigolo dell'edificio coincida con il baricentro del sistema di masse.
Determinare punto di applicazione della risultante, che sara il baricentro del sistema di masse.

e forze peso delle due masse — P1: 700N P2:300N

e lunghezza tavola da ponte (distanza fra le due masse) — L: 4m
Determinare l'incognita formale, la distanza x che separa il baricentro della massa 1, dal baricentro
complessivo del sistema di masse (punto di applicazione della forza peso risultante delle due forze-peso).
Cosa sappiamo della risultante? Che la sua retta d'azione avra direzione verticale;
Conosciamo il modulo R della risultante (in virtu del fatto che tutte le forze hanno la medesima direzione)
sara pari alla somma dei moduli:
[P1] + [P2] =700 + 300 = 1000N
Sappiamo che R sara paria —P1 — P2 — verso opposto all'asse Y

fa
I i R -Py-P, Non sappiamo la posizione della retta d'azione
N s +PL4Py g = -RX= - (e o) X Si collochera su una retta d'azione che sara posizionata tra P1 e P2, ¢
o Pl - - (PueP)-X verosimilmente piu vicino a P1 (avendo modulo maggiore).

Eleggiamo quale polo Q il punto di applicazione di P2:
-2.8[m] la forza P1 avra un braccio rispetto a quel polo (L),
la forza P2 non avra un braccio rispetto al polo Q (nullo)
la forza risultante R avra un braccio (X)
La posizione della retta d'azione ¢ pari a -2,8m
La retta d'azione di R, sulla quale agisce R, distera da Q, una lunghezza (X) che ¢ pari a 2,8m

Baricentro di un sistema piano di masse puntiformi
Possiamo ricondurre questo caso anche a masse non puntiformi
Porzione di maschio murario di spessore costante, ¢ sagomato in maniera da realizzare una rampa scala
Come facciamo a determinarne il baricentro?

1) Suddividere la scala in n volumi elementari (quadratini, a cui attribuiamo la propria massa, e

calcoliamo la singola forza-peso) Otteniamo la risultante delle forze-peso

Avendola definita come agente sulla retta d'azione, conosciamo esattamente la posizione del baricentro, ma
non ancora la sua altezza.

2) Come facciamo a determinare le coordinate cartesiane precise del baricentro?

Ripetiamo lo stesso procedimento applicandolo alle medesime masse elementari, ma immaginando
un'accelerazione, non di gravita (verticali) ma orizzontali.

3) Applico a queste forze il teorema di Varignon, trovo la risultante agente su una data retta d'azione;
l'intersezione delle due rette d'azione, (delle risultanti delle forze verticali e orizzontali),
identificano univocamente il baricentro di questo corpo bidimensionale.

Per corpi dotati di masse distribuite, il baricentro (CG: center of gravity) non appartiene necessariamente ad
un punto fisico del corpo dotato di massa.
Ad esempio in virtu della simmetria radiale di un anello, il baricentro ¢ nel centro, laddove non c'¢ massa.
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Esempi di baricentri di figure piane 1-2
¢ PARALLELOGRAMMA: G — punto di intersezione delle diagonali

e TRIANGOLO: G — punto di intersezione delle mediane (segmenti che partono da un vertice e
arrivano nel punto medio del lato opposto al vertice) dista da ogni lato di 1/3 della rispettiva
altezza.

¢ QUADRILATERO:

Tracciare diagonali, che definiscono 4 triangoli.

Determinare i baricentri dei 4 triangoli

G — punto di intersezione delle congiungenti dei 4 baricentri
e TRAPEZIO:

Tracciare un segmento alla base inferiore, pari alla base superiore.

Tracciare un segmento alla base superiore, pari alla base inferiore.

Unire i due estremi dei due segmenti. Considerare segmento che congiunge punti medi delle due basi
e ARCO DI CERCHIO:

La sua distanza dal centro Xo ¢ pari al raggio per la corda, diviso la lunghezza dell'arco di cerchio

Determinazione del baricentro di un sistema piano di masse
Esempio architettonico con Sistema di riferimento destrorso positivo originato nel punto z

Frontone di una chiesa (edificio a manica singola)
Sulla facciata adiacente alla facciata della chiesa, vi ¢ la facciata di un campanile, sormontato da un timpano
triangolare.

Parametrizzazione della geometria
Chiesa — manica: 3b, altezza: 3b
Campanile — larghezza: b, altezza: 6b
Triangolo — altezza: b

Determinarne il baricentro complessivo dei tre elementi
Ci poniamo il problema di sapere quale sara il punto di applicazione della forza-peso che ¢ il peso proprio di
tutti gli elementi strutturali che costituiscono la facciata.

A fronte di carichi verticali/gravitazionali

Se il setto murario fosse soggetto ad un sisma ondulatorio, per il baricentro passerebbe la forza orizzontale
che il sisma esprime sul setto murario di facciata che sara pari alla massa della facciata per I'accelerazione
sismica. Qualunque valutazione della risposta strutturale , tanto a carichi verticali quanto a carichi
orizzontali, richiede la determinazione del baricentro di questo setto murario.

Dato che lo spessore del muro lo definiamo costante in tutto I'edificio, possiamo trascurarne la terza
dimensione e limitarci alla bidimensionalita che vediamo nel piano XY

Trovare YG
1) Determiniamo il baricentro di ognuna delle figure
p= [kg/bz] densita di massa rispetto all’unita di superficie geometriche (quadrato, rettangolo, triangolo
rettangolo)
=0h2
|F1l 9 P 9 2) Troviamo il modulo di ognuna delle forze-peso
|F |=6b2 forze peso soggette ad soggette ad accelerazione di gravité g, moltiplicando il
2 pPg accelerazione di gravita g modulo della loro superficie per Rho () ed

ulteriormente per g.
IFl=112b% g o
l 3) Quotare le lunghezze necessarie per definire le

T h— coordinate dei singoli baricentri rispetto all’origine del
i sistema di riferimento. Ottengo 3 forze, di cui voglio

R= @i—i' _| ( q + 6 2% 0,6 ) o , 5[ 5 Pgbz determinare la posizione della risultante.

4) Teorema di Varignon

I—VERSO opPPosTo AD Y -R che ha bracciorxC (segno negativo convenzione del

momento che R esprime rispetto al polo Q) =

RX = - F b F b F b - momento risultante (somma algebrica dei tre momenti
q 2 17 2 33 delle tre forze)

XG=pab’ e

-F1 braccio 3/2b (momento negativo)
3 .2I8 F2 braccio 7/2b (3b+B/2)

/Ogbs <.2.=l + —+ —) /03 b F3 braccio 11/3b

5) Sostituisco i moduli con i valori trovati

-& Posso raccogliere
»
Riduco ai minimi termini il momento risultante con un
A8 | b's 208 : 3 bz q b comune multiplo ()
© B
/D 6) Porto in evidenza xG
|_ 15,5 — —— Se la base della navata era 3b, adesso so che xG &

paria2b + 1/3b
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Determinare YG

Espressioni dei moduli delle forze peso invarianti

I bracci del peso rispetto al polo Q determinato (angolo basso a sinistra) erano gia determinati
Rivalutare modulo del momento risultante, e noto momento forza risultante, ottenere 1'ordinata

R=+F +F,+F, = pgh*(9+6+0.5)=+155pgbh’

g S o BT e WHY 008
~ Ry, =~F,5b=F,3b~F,—b=—pgb [?+18+E]——,ng -
% s 9.
J.-{_=£,gb-‘@l= ;208 6 i 208, 5 54p
: 6 R 6 9pgb® 93

Risultante di un carico distribuito

Sfruttiamo concetto di baricentro di una superficie per affrontare una questione tecnica

Alcuni carichi sulle nostre architetture possono essere modellati attraverso il concetto di carico distribuito
Ad un carico distribuito (esempio operai sulla trave) corrisponde un diagramma di carico (forza peso
complessiva di tutti gli operai distribuita)

Carico uniformemente distribuito lungo una linea L

Carico distribuito lungo una lunghezza (L), e modulo (q) che corrisponde all'altezza del diagramma di carico
rettangolare (modulo di Q non varia lungo L)

Operazione inversa: noto il diagramma di un carico uniformemente distribuito ci proponiamo di valutare la
forza risultante di quel carico (la forza concentrata che equivale al carico distribuito iniziale dato).

La soluzione ¢ una forza concentrata (Q), il modulo sara pari all'area del diagramma di carico (essendo
rettangolare, la sua area ¢ base (L) x altezza (q) - Q=qxL

Questa risultante Q, ha il verso del carico e agira su una retta d'azione della medesima direzione del carico, e
passera per il baricentro dell'area di carico.

Nel caso di un diagramma di carico rettangolare, il baricentro si pone all'intersezione delle diagonali che
distera da un estremo della base L/2.

Carico linearmente distribuito lungo una linea L

Conosce il massimo modulo ad un estremo di L e si annulla in corrispondenza dell'altro estremo, cosicche il
diagramma di carico risulta essere un triangolo rettangolo ed il diagramma di carico non ¢ piu
uniformemente distribuito ma linearmente distribuito lungo una linea L.

Determinare la sua forza risultante: il modulo della risultante ¢ pari all'area del diagramma di carico, la sua
retta d'azione passa per il baricentro dell'area di carico

carico distribuito valore Q distribuito lungo L — risultante: Q = q x L/2

Dove passera la sua retta d'azione? Per il baricentro del diagramma di carico (che dista da un lato una
quantita pari a 1/3 l'altezza costruita su quel lato); la retta d'azione dista dall'estremo dove il carico e
massimo, 1/3 della lunghezza su cui il carico ¢ distribuito.

Unita di misura carico uniformemente/linearmente distribuito

q=(N/m) L=(m) —»Q=(N)

Carico uniformemente distribuito su una superficie (blocco di carico)

La retta d'azione della risultante passera per il baricentro del volume (corrispondente ai baricentri delle
superfici laterali e di base del volume di carico. Q=qxLxB

Unita di misura carico uniformemente distribuito su una superficie

q=(N/m"2) L,B=(m) - Q=)

Coppia

Sistema di forze, costituito da due sole forze che hanno medesimo modulo e direzione, ma versi opposti e
agiscono su rette d'azione che sono parallele ma distinte, e la distanza fra le due rette d'azione la chiamiamo
b (braccio della coppia).

Due forze (vl e v2), aventi stesso modulo ma versi opposti, agenti su rette d'azione parallele r1 ed r2

Proprieta
® Lasomma delle due forze/la forza risultante ¢ nulla — V,+V, =F-F=0
e Lasomma dei momenti rispetto ad un polo qualsiasi
non ¢ nullo (diverso sa zero)
non dipende dal polo che abbiamo scelto ma dal modulo e verso delle forze, e dalla distanza tra le due rette
d'azione delle forze (braccio)
Eleggiamo polo Q, per esprimere bracci di v1 e v2 rispetto a Q (hl e h2)
Il momento risultante della coppia (C)
di questo sistema di forze ¢ — C=v,-h,-v,-h, =v,-h,-v, (b +h,)=
=v,-h,—v,-b—v,-h =F-h, —F-b —F-h, =
=—Fb



Posso rappresentare il sistema coppia o dettagliando le due forze e il braccio che le separa, oppure non
disegnare le due forze e il braccio, ma semplicemente indicare il momento risultante C (equivale negli
effetti, al sistema delle due forze che definiamo coppia).

Composizione di forza e coppia
Ho una forza F che agisce su una retta d'azione r e una coppia C

Qual ¢ la risultante della composizione di una forza e di una coppia?

Premesse

- La coppia dipende dalla distanza relativa tra le due forze, quindi non ¢ necessario indicare il punto di
applicazione.

- Noto il valore di una coppia, sono in grado di definire univocamente il modulo delle due forze ¢ il braccio
che generano quel momento? No, perché ci sono infinite combinazione di modulo della forza e di braccio
che restituiscono la stessa coppia.

Posso decidere che la coppia C sia frutto di due forze che hanno modulo, pari al modulo della forza data F
Definisco un particolare valore del braccio che garantisce che la coppia abbia modulo C se ottenuta da due
forze (che costituiscono il sistema coppia) di modulo F

Posso riscrivere il sistema iniziale di forza + coppia (due forze che agiscono su rette d'azione distanti b,
aventi stesso modulo di F) come un sistema di sole forze

La forza che ha verso opposto alla forza iniziale F, la posiziono sula stessa retta d'azione della forza F
Passiamo cosi da una rappresentazione di una forza e una coppia — alla rappresentazione di tre forze

Abbiamo quindi due forze di uguale modulo , verso opposto, agenti sulla medesima retta d'azione (F ed F")
che si eliminano fra di loro.

Risultato: la risultante della composizione di forza f e coppia c € una forza F di ugual modulo della forza
iniziale ma che ¢ stata trasportata su una retta d'azione che dista b dalla retta dazione della forza originaria.

Posso calcolare per entrambi i sistemi quali siano forza risultante e momento risultante rispetto al polo Q
In entrambi i casi la forza risultante e pari ad F e il momento risultante intorno al polo Q e pari a -F x d

2F=F Y F-F
ZM=—F-(b+d)+C=—F‘(b+d)+F-b=—F-d ZM=-F'd

A cosa corrisponde la composizione di una forza e di una coppia?
Ad una forza identica alla precedente ma con posizione diversa

Momento di trasporto
Una forza F puo essere trasportata parallelamente a se stessa per una distanza b se si aggiunge un momento

di trasporto M, di intensita M =F x b, dove b ¢ la distanza tra la nuova retta d’azione della forzar’ e la
precedente r .

Ad F aggiungo due forze messe sur', queste due realizzano una coppia.

Ho ottenuto lo scopo di spostare F aggiungendo una coppia che esprime un momento pari alla forza per la
distanza per cui voglio trasportarla.

Il sistema iniziale e il sistema finale hanno la medesima forza risultante e momento risultante rispetto al

polo Q.
SFF+F +F =F+F-F=F Dl
ZM“F'd*F"(b +d)+F (b +d)=-F-d IM=Fd

Applicazione del momento di trasporto 1 “Fastidio modellistico”
Catena rialzata dell'arco che eliminava la spinta

L'arco spinge alle imposte con forze orizzontali F
Considero solamente un semi arco per semplicita
La forza risultante ¢ F stessa, ¢ il momento risultante rispetto al polo Q che eleggo sulla chiave di volta ¢
F x b (positivo)
Perch¢ disturba avere la forza in quella posizione?

—F~—%—" Perché se modello la spinta dell'arco all'imposta, non capisco come la catena possa
»  equilibrarla (la catena esprime una forza che agisce su una retta d'azione che non ¢
£ r all'imposta, ma alla catena).

&y . Posso figurarmi di ipotizzare che sulla retta r' che passa per la volta, di aggiungere
——" due forze F di verso opposto e modulo pari ad F; Mi rendo conto che la F originaria
» ed F" realizzano una coppia — momento di trasporto che aiuta a portare F dar ad r'.

r Ma perché il sistema sia equivalente devo aggiungere un momento di trasporto.
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La catena fa si che questa spinta F sia ripresa da spinta F trasportata sopra.

Le due spinte sembrano messe in comunicazione dalla catena.

Perche ¢ importante 1'unghia di muratura — elemento strutturale che dovra essere i grado di resistere a
questa coppia.

Ho usato un momento di trasporto per ottenere la rappresentazione statica del problema, equivalente alla
iniziale che ¢ piu congeniale nel fornire interpretazione meccanica di quello che sto osservando.

® Risultante di sistemi di forze-peso agenti su stessa retta d'azione
® Risultante di sistemi di forze-peso agenti su rette dazione planari, distinte, non parallele

® Risultante di sistemi di n forze agenti su rette d'azione planari, distinte, non parallele, sia che si
incontrassero in unico punto di intersezione, o a due a due in punti di intersezione diversi

® Risultante di sistemi di forze agenti su rette di forze planari ma parallele
e Risultante di carichi distribuiti che equivalgono eventualmente a sistemi di forze

® Risultante di sistema di forze particolari: coppia

CONDIZIONI DI EQUILIBRIO - VINCOLI

Definizione parziale di equilibrio, per un sistema di forze agenti sulla medesima retta d'azione:

valutiamo la risultante e consideriamo quale equilibrante, quella forza che sommata alla risultante da come
risultante ulteriore il vettore nullo.

Estendiamo la definizione di equilibrio al caso generale di un sistema qualunque di forze, e che agiscono

non necessariamente su rete d'azione complanari.

Sistema di forze equilibrato: la risultante e il momento risultante rispetto ad un polo qualsiasi sono nulli
Vogliamo che tutti gli effetti della forza risultante siano nulli, e che tutte le rotazioni siano nulle intorno a
tutti 1 punti.

Duplice condizione: entrambi sono condizioni necessarie ma da sole non sufficienti all'equilibrio.

Equazioni di equilibrio: relazioni matematiche che legano tra loro le forze e le coppie che costituiscono il
sistema

1) Risultante nulla
R ¢ la risultante che deriva dalla composizione (sommatoria) di tutte le i-esime forze.
Perche sia in equilibrio dobbiamo verificare che questa risultante sia uguale al vettor nullo — equazione
— X estesa a tutte le forze del sistema

2) Momento risultante nullo
Espressione del vettor momento, risultante rispetto ad un polo A qualsiasi.
Come posso esprimere un momento risultante del sistema di forze?
E' pari alla sommatoria dei momenti espressi dalla singola i-esima forza rispetto al polo A, e dovro
aggiungere le eventuali coppie/momenti che caratterizzano compiutamente la j-esima coppia.
Dovro verificare, se voglio che il sistema sia in equilibrio, che il momento risultante sia = al vettor nullo.
— X estesa ai momenti di tutte le forze calcolati rispetto ad un polo A qualsiasi, e a tutte le coppie del sist

Dobbiamo posizionare le equazioni a sistema, perché devono essere simultaneamente osservate le
uguaglianze, altrimenti non necessariamente c'¢ l'equilibrio.

Bisogna cercare di trattare le equazioni di equilibrio scritte in termini vettoriali, ma scriverle come se fossero
scalari. Per farlo ¢ necessario valutare, invece delle forze, ognuna sulla loro retta d'azione comunque diretta,
di ogni forza/momento considerarne le componenti secondo le tre direzioni del sistema di riferimento
cartesiano ortogonale scelto.

Per ognuna di esse applico la scomposizione della forza nelle direzioni degli assi X, Y, Z

Per ognuna delle forze abbiamo 3 componenti (di 100 forze — abbiamo 300 componenti/forze)

Equilibrio nello spazio e nel piano

Equilibrio nello spazio: ognuna delle equazioni vettoriali puo essere scritta sotto forma di tre equazioni
Possiamo osservare I'equilibrio non piu delle forze ma delle componenti delle forze e dei momenti nelle
direzioni X, Y, Z, invece di avere due condizioni di equilibrio e due equazioni, avremo sempre due
condizioni di equilibrio ma in 6 equazioni:

Equilibrio alla traslazione: 3 equazioni di proiezione su tre direzioni

- Equilibrio delle componenti secondo X delle forze

- Equilibrio delle componenti secondo Y delle forze

- Equilibrio delle componenti secondo Z delle forze

Equilibrio alla rotazione: 3 equazioni di momento rispetto a 3 rette

- Equilibrio dei momenti intorno ad X

- Equilibrio dei momenti intorno ad Y

- Equilibrio dei momenti intorno ad Z




A

Passiamo da un sistema di due equazioni vettoriali, ad avere un sistema di sei equazioni (formalmente
vettoriale, ma in realta pseaudo-scalare, perché per descrivere compiutamente i vettori mi basteranno i
moduli segnati).

Queste equazioni che verificano 'equilibrio sono cosi importanti nella statica che si chiamano spesso
equazioni cardinali della statica.

Una forza comunque inclinata nello spazio, ¢ attesa avere tre componenti (una per ogni direzione che il
sistema di riferimento descrive)

Equilibrio nel piano : se il mio sistema di forze ¢ piano, e se sto discutendo 'equilibrio di quel sistema di
forze, allora per discutere 1'equilibrio del piano avro bisogno di solo tre equazioni di equilibrio

(se ho delle forze nel piano XY, ogni forza la posso scomporre nelle componenti secondo le direzioni X ed
Y, avranno una componente in direzione Z? No, quindi ¢ inutile che scriva I'equazione dell'equilibrio delle
componenti secondo Z, perche l'identita sara pari a 0).

Se le forze sono sul piano, allora i momenti che esprimeranno rispetto ad un polo nel piano saranno momenti
che avranno come retta d'azione, rette sempre e solo dirette come Z, quindi sara sufficiente descrivere
l'equilibrio dei momenti intorno a Z.

2 equazioni di equilibrio lungo X e lungo Y che tradurranno in forma pseudo-scalare I'unica equazione di
equilibrio della forma risultante.

1 equazione di equilibrio dei momenti intorno a Z, che sostituira l'unica equazione vettoriale di equilibrio
dei momenti.

Caso elementare:
due forze F1 e F2, agiscono sulla medesima retta d'azione, hanno moduli uguali e versi opposti.

w8 Py =0
Equazione risultante R= F1 s F2 =0
F,~F, =0
Equazione di momento risultante intorno al polo A M;=—FK-b+F-b=0

Equilibrio nel piano
Le equazioni nel piano si riducono a 3:2 di proiezione secondo direzioni contenute nel piano ed una di

momento ad una retta perpendicolare al piano

se scrivo equilibrio delle forze secondo X, equilibrio delle forze secondo Y, I'equilibrio dei momenti intorno
a Z — scrivo tre equazioni di equilibrio che metterd nel sistema (perche dovranno essere simultaneamente
verificate per garantire l'equilibrio).

Queste tre equazioni impongono delle condizioni indipendenti (quando valuto forze di direzione X, per
definizione queste non avranno componenti in direzione Y ¢ viceversa, quindi ¢ evidente che le condizioni
che imporranno saranno perfettamente indipendenti).

L'importante € porre tre condizioni attraverso tre equazioni in maniera che siano indipendenti.

In alternativa:

® 2 equazioni di momento intorno a due poli distinti e una sola equazione di equilibrio delle
forze lungo una direzione delle componenti che non sia perpendicolare alla congiungente dei poli
intorno ai quali ho valutato i momenti.
Se uno una direzione per le componenti delle forze che invece ¢ perpendicolare e alla congiungente dei poli,
questa terza equazione non ¢ piu indipendente.

M, = 3'F -br, =0 Mg =3 F -br, =0
=1 =1

n

R=2F=0

=1

e 3 condizioni di equilibrio dei momenti intorno a tre poli non allineati

=0 Mg=>'F -br =0
i=1

M, =>'F -br, =0
=1
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Equilibrio nel piano: COROLLARI
Abbiamo I'equilibrio nel piano, se quelle tre equazioni sono uguali a 0

Ci sono casi in cui non vale neanche la pena di scrivere quelle equazioni per accorgerci che quel sistema di
forze ¢ in equilibrio oppure no.
Ci sono casi in cui sappiamo a priori che l'equilibrio non ci puo essere.

® Sistema di due sole forze, sara in equilibrio (condizione necessaria ma non sufficiente) se le due
forze agiranno sulla medesima retta d'azione.

e Sistema costituito da 3 forze, sara in equilibrio soltanto se queste sono complanari e concorrenti o
parallele

Fino ad ora abbiamo imposto delle condizioni di equilibrio che si basano sulle forze, ma sappiamo che ad
ogni forza equivale un corrispettivo cinematico (perche la forza ¢ la cause che su un corpo dotato di massa
ha un effetto — traslazione/spostamento (della forza), rotazione (del momento).

Dire che il momento risultante ¢ nullo, e che la forza risultante ¢ nulla — equivale a dire che la traslazione e
la rotazione del corpo sono nulle.

Come descriviamo il vettore traslazione e rotazione?

Ogni traslazione e rotazione nello spazio possono essere descritte da tre componenti (lungo X, Y, Z)

Queste componenti si chiamano gradi di liberta (componenti del moto di un corpo rigido nello spazio)

Nello spazio un corpo rigido ha 6 gradi di liberta (GdL)

Se descrivo i 6 gradi di liberta che fanno muovere un corpo da un punto A ad un punto B, ho descritto
perfettamente la posizione finale del corpo, in tutte le sue parti, perché la rotazione fa si che tutti i punti
abbiano la medesima velocita angolare, perché il corpo ¢ rigido.

Nel piano un corpo rigido ha 3 gradi di liberta (GdL)

Traslazione lungo X ed Y, rotazione intorno a Z

imporre che il momento risultante intorno a Z sia nullo, implica imporre che il grado di liberta di rotazione
intorno a Z si annulli (nulla ¢ la causa, nullo ¢ I'effetto).

VINCOLI E REAZIONI VINCOLARI NEL. PIANO

A fonte della variabilita nello spazio e nel tempo durante la vita utile dell'architettura possiamo figurarci che
sia probabile che queste forze applicate da madre natura siano naturalmente in equilibrio? Diano
naturalmente la risultante nulla? No.

Eppure l'architetto deve garantire le prestazioni meccaniche dell'architettura, e la prima ¢ l'equilibrio.
Come possiamo fare per garantire 1'equilibrio? Cosa vuol dire progettare I'equilibrio?

Da unto di vista statico, aggiungere ad un sistema di forze dato, (dalla funzione dell'architettura/madre
natura) delle altre forze che decidiamo noi di mettere ¢ si fanno garanti dell'equilibrio.
Progettare/eliminare dei gradi di liberta laddove non siano uguali a 0

E' piu congeniale la progettazione cinematica, che non la progettazione statica.

Eliminare gradi di liberta vuol dire progettare delle strutture, degli elementi strutturali che annullino le
componenti di spostamento degli elementi strutturali di cui ci interessa garantire l'equilibrio.

Queste strutture che eliminano gradi di liberta vengono chiamati vincoli reali (calcestruzzo, acciaio...)

Versione semplificata del vincolo reale — vincolo ideale (svolge la medesima funzione/ rappresenta
molteplicita dei vincoli materiali reali che potemmo progettare, fornendo una loro categorizzazione che
obbedisce alla ragione fondamentale del vincolo: ¢ ispirata ai gradi di liberta che il vincolo elimina, dato un
corpo rigido.

reazioni vincolari

vincolo INCASTRO CERNIERA PIESEEFD CARRELLO
GdL consentiti 0 1 1 2
Componenti dello
spostamento consentite =t a; Ll U, a,
Gradi di vincolo 3 2 2 1
Componenti delle R, R, M, R R R, M, R,




Incastro:

3GDV — 2 traslazioni e 1 rotazione (in grado di vincolare una struttura)

Sistema di riferimento assoluto (x,y,z)

Segmento spesso che indica copro rigido che vogliamo vincolare

Il resto del pittogramma nero ¢ il pittogramma del vincolo

Questo vincolo, e componenti di spostamento consente al corpo rigido vincolato (GdL)?
Non consente nessuna traslazione e nessuna rotazione

Gradi di vincolo, che il vincolo esprime/quante sono le componenti/GdL annullati? 3
Quali sono le forze che il vincolo esprime (reazioni vincolari) e che saranno utili per garantire l'equilibrio in
senso statico (risultante e momento risultante nulli)

R: reagente (forza reagente) secondo ed y, e il momento intorno all'asse z

1l vincolo annulla i gradi di liberta, ma facendolo produce reazioni vincolari (prodotto di scarto statico di un
“ammazzamento/annullamento” cinematico)

Reazione vincolare che l'incastro esprime lungo X: Fix + Fax+ Fax+ Rx=0
Rx ¢ incognito, ma posso determinarlo perche sara l'unico modulo e verso che assicura che questa equazione
di equilibrio sia verificata, mi consente di assicurare 1'equilibrio.

Cerniera:

Gradi di liberta: 1

Gradi di vincolo espressi: 2 (tranne rotazione « intorno a z)
Reazioni vincolari espresse Rx ed Ry

Doppio pendolo:

Gradi di liberta: 1

Gradi di vincolo consentiti: 2

una delle due componenti di traslazione (uy traslazione intorno y = direzione che risulta essere
perpendicolare alle due barrette che realizzano il pittogramma)

Elimina la componente traslazione lungo x e il momento intorno a z

Medesimo pittogramma dell'incastro, sormontato da un triangolo e a volte da un pallino sopra il vertice
superiore (centro di rotazione lasciato libero dal vincolo)

il doppio vincolo ¢ ancora costituito dal pittogramma dell'incastro

due semicerniere da ognuna delle quali parte una bacchetta

altre due semicerniere e una piastra/stanghetta, da cui diparte il corpo rigido.

Y1 u, Carrello:
> o Meno efficace
o GdL consentiti: 2
A Componenti dello spostamento consentite: ux, oz
z 2 elimina un grado di liberta esprimendo un grado di vincolo (traslazione perpendicolare al piano di

scorrimento del carrello, Ry)

Pittogramma simile alla cerniera, ma al di sotto del triangolo ci sono due altri cerchietti che indicano due
rotelline su cui si muove il carrello/appoggio

Incastro e cerniera esprimono gradi di vincolo che non dipendono dalla giacitura del vincolo medesimo
Viceversa il doppio pendolo e il carrello dato che consentono un grado di liberta di traslazione, non possono
dipendere dalla loro giacitura.

Generalizzazione per doppio pendolo e carrello

Definizione piu generale

Sistema di riferimento locale che ha l'asse t tangente al piano di scorrimento del carrello (dell'incastro
doppio pendolo) e asse n ortogonale/normale ai precedenti (parallelo alle viellette)

In generale il doppio pendolo permette una componente di traslazione secondo t, cosi come anche il carrello,
mentre eliminano le componenti di traslazione secondo n.

Piu in generale il carrello elimina il grado di
liberta normale (ortogonale) al piano di
scorrimento.

E altrettanto dicasi per il doppio pendolo

DOPPIO

vincolo

PENDOLO

GdL consentiti

1

Componenti dello
spostamento consentite

U:

Gradi di vincolo

2

Componenti delle
reazioni vincolari

Ry M,




e Definizione generale di isostaticita: un sistema di corpi si dice isostatico quando i gradi di vincolo
che applico al sistema di corpi ¢ strettamente sufficiente per eliminare ogni grado di
liberta/ogni componente dello spostamento rigido del corpo.
Qualunque sia il numero di corpi, nel piano o nello spazio, e quindi qualunque sia il numero di gradi di
liberta che devono annullare (pari al numero di corpi X3, nel piano o x6, nello spazio), il mio sistema di
corpi si dice isostatico quando ho assoldato il numero strettamente sufficiente di vincoli per annullare tutti i
gradi di liberta.

e Definizione generale di iperstaticita: un sistema di corpi si dice iperstatico quando esistono dei
gradi di vincolo sovrabbondanti, cio¢ che si possono togliere senza che si renda possibile alcun
movimento rigido.

Numero di risorse di vincolo maggiore dei gradi di liberta.

Puo essere piu svantaggioso, perché piu elaborato matematicamente discutere le condizioni di equilibrio per
un corpo iperstatico.

Quando un sistema ¢ iperstatico non ¢ possibile determinare le condizioni di equilibrio sulla scorta delle sole
equazioni di equilibrio.

e Definizione generale di labilita: sistema di corpi si dice labile quando i gradi di vincolo risultano
insufficienti ad impedire ogni movimento rigido.
Architettura soggetta a cinematismi — crollo
Queste reazioni vincolari sono eventualmente esprimibili dal vincolo, e potranno variare durante la vita utile
della struttura, in modulo e verso, per garantire sempre l'equilibrio, anche al variare delle forze applicate.

Relazioni quantitative che permettano di capire quando un corpo si dice isostatico, iperstatico o labile.
Esempi di corpi vincolati

1) Struttura: corpo, cerniera e carrello/appoggio
Struttura -1 grado di vincolo

Come posso capire se questo copro ¢ isostaticamente vincolato?

Mi ¢ sufficiente degradare un vincolo eliminando un grado di vincolo

il carrello esprime 1 grado di vincoli, quindi degradarlo di un grado di vincolo vuol dire far sparire il
carrello. — rimane solo la cerniera.

Quel corpo rigido potra avere un centro di istantanea rotazione intorno alla cerniera , perche lascia libero il
grado di liberta di rotazione.

La seconda risulta essere una condizione di labilita.

Per ottenere la condizione di labilita e stato sufficiente togliere un grado di vincolo

La prima ¢ una condizione di isostaticita (strettamente necessaria all'isostaticita).

2) Portale: cerniera e carrello

Togliamo alla cerniera un grado di vincolo — diventa carrello, che potra avere scorrimento verticale o
orizzontale. Immaginiamo di eliminarlo lungo x — il portale diventa struttura vincolata da due carrelli
La prima — isostatica

La seconda — labile

3) Mensola: incastro ad un estremo

Possiamo degradare l'incastro togliendoli un grado di vincolo

Se tolgo grado di vincolo alla rotazione — diventa una cerniera

In questo caso, pero ¢ stato rimosso un grado di vincolo di traslazione — ¢ diventato un doppio pendolo
La prima — isostatica

La seconda — labile



4) Unico corpo rigido vincolato con una cerniera e due carrelli
Se degrado un grado di vincolo (eliminando un carrello) — sistema di vincolo una volta iperstatico

Sistemi anomali
1) Rollerblade

Es: rollerblade

Un sistema di vincolo anomalo ¢ un sistema di vincolo potenzialmente il numero dei gradi di vincolo
elimina tutti i gradi di libertd, ma questo non avviene perche i gradi di vincolo sono distribuiti tra i gradi di
liberta in maniera non opportuna.

Ho piu vincoli (es 3), e due di questi hanno eliminato lo stesso grado di liberta.

Uno dei carrelli non ¢ stato orientato con piano di giacitura verticali.

Ho tre gradi di liberta e tre gradi di vincolo, non spesi bene per eliminare tutti i gradi di liberta

2) Centro di istantanea rotazione

C=centro di istantanea
% - rotazione

Se il piano di scorrimento del carrello lo oriento in maniera tale per cui la retta d'azione della forza reagente
espressa normalmente al piano di scorrimento del carrello e le due rette d'azione delle forze reagenti delle
forze espresse dalla cerniera si incontrano in un unico punto — centro di istantanea rotazione (la struttura
nell'ambito delle piccole rotazione puo essere soggetta a questo determinato cinematismo in figura)

3) Cuscinetti a sfera
Corpo rigido vincolato con un numero n di carrelli che hanno i loro piani di scorrimento tali per cui le rette
dazione delle forze reagenti si incontrano tutte in un punto C al finito (centro di istantanea rotazione).

iC

Es: cuscinetti a sfera

Un sistema di vincolo ¢ sicuramente anomalo, laddove le rette d'azione di tutte le forze reagenti
espresse dai vincoli si incontrano nello stesso punto, sia esso al finito (rotazione) o all'infinito
(traslazione).

Fin'ora ho immaginato di considerare un corpo rigido e di volerne eliminare i gradi di liberta/di annullarli
rispetto ad un sistema di rifermento assoluto (x,y,z).

Altra condizione: voler eliminare dei gradi di liberta di un corpo rigido, non piu rispetto al riferimento
assoluto, ma rispetto ad un altro corpo rigido — caso architettura composta da molti corpi rigidi.

L vincoli interni nel piano
questi vincoli che limitano i gradi di liberta relativi tra un corpo rigido e 1'altro si chiamo vincoli interni,

perche sono interni al sistema di corpi rigidi/alla struttura/architettura

Cerchietto: cerniera interna

¥ Un corpo, (stanghetta superiore) ha un grado di liberta
consentito, ma non definito rispetto al sistema di riferimento

G R, assoluto x,y ma di una rotazione relativa di un corpo rispetto

: uﬁﬁ all'altro.

Rx e Ry — componenti di forza che un corpo rigido applica

all'altro al fine di eliminare i gradi di liberta corrispondenti.

Tipico esempio di cerniera interna: articolazioni del nostro corpo

Vo LR L filiconl Il doppio pendolo segue la stessa definizione data per il vincolo
Gradi di liberta 1 esterno, ma questa volta al posto del pittogramma dell'incastro
Componenti dello = . c‘.é un altro corpo rigido (orientato verso X,y, unite dalle due
spostamento : y viellette)
Traslazione relativa di un corpo rispetto all'altro (uy)
Gradi di vincolo 2 2 I due corpi si scambiano reazioni vincolari interne che
Componenti delle R, R R, M consentono di annullare la traslazione secondo x e la rotazione

reazioni vincolari

intorno a z (Rx Mz).




Incastro interno: quando ho due corpi rigidi, internamente incastrati — diventano un unico corpo rigido
qualunque punto di un corpo rigido equivale ad un incastro interno.

Strtura  Enemtiime) Esempi di corpi vincolati
Due corpi rigidi formati ad L
Hanno vincoli esterni? Le due cerniere
Hanno vincoli interni? Una cerniera che li unisce
E' una struttura isostatica? Secondo intuizione cinematica possiamo degradare un grado di vincolo, una delle

’ \l due cerniere diventa carrello, e ci rendiamo conto che la struttura diventa labile.
“ Vuol dre che che questa condizione di vincolo, con un grado di vincolo in piu € resa statica.

Struttura -1 grado di vincolo

Portale zoppo (ritto e trasverso) incastrati, fra di loro incernierati

Degradiamo un grado di vincolo, facciamo diventare 1'incastro una cerniera. Verosimilmente questa struttura
era almeno una volta iperstatica.

Possiamo eliminare una altro grado di vincolo, e ritorneremmo al caso del portale a due cerniere.

Trave Gerber

Due corpi rigidi con tanti vincoli esterni (due appoggi e una cerniera) e una cerniera esterna.

E' isostatica perch¢ eliminando un grado di vincolo, per esempio un carrello, vediamo che non tutta la
struttura ¢ soggetta ad un cinematismo, ma almeno un corpo rigido ¢ soggetto ad una rotazione.

E' sufficiente che un corpo che costituisce il sistema abbia un grado di liberta concesso perché la struttura
non sia piu isostatica.

Anche in questo caso esistono i sistemi anomali
Sistemi anomali

Gerber anomala

pur avendo molti vincoli esterni, e interni, € comunque consentito un cinematismo locale, dovuto alla
maldisposizione dei vincoli interni

o

Portale a tre cerniere

3|

Caso ricorrente di vincoli anomali interni: quando vi sono tre cerniere interne consecutive (due interne o
una esterna consecutiva senza l'interposizione di altri vincoli esterni o interni) che giacciono tutti sullo stesso
allineamento.

Vi ¢ sempre la possibilita di una rotazione relativa di un corpo rispetto ad un altro.

Dato un sistema di corpi rigidi, e di vincoli interni ed esterni, siamo in grado di stabilire quantitativamente e
rigorosamente se lo schema di vincolo realizza una struttura isostatica iperstatica o labile?
Si, a meno delle maldisposizioni vincolari/sistemi anomali.

Confrontare il numero di gradi di liberta che sono tipici del sistema di corpi, e il numero di gradi di vincolo
che sono tipici dei vincoli che a questi corpi applichiamo.

- Se il numero di gradi di liberta ¢ uguale al numero dei gradi di vincolo, allora questa ¢ una condizione
necessaria all'isostaticita.

- Se il numero dei gradi di liberta ¢ maggiore al numero del numero dei gradi di vincolo , questa ¢ una
condizione necessaria alla labilita.

- Se il numero di gradi di liberta ¢ minore del numero dei gradi di vincolo, questa ¢ una condizione
necessaria alla iperstaticita.
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Struttura ad arco a tre cerniere, distinguiamo due cerniere (che formano due semi-archi)
esternamente all'imposta sono vincolati da due vincoli esterni di cerniera (in A e B)
ma necessariamente hanno anche un vincolo interno (cerniera in C).

Numero dei gradi di liberta complessivi = a 3 gradi di liberta per ogni corpo rigidon — 6

Se ci fosse stato un incastro, ogni incastro avrebbe espresso 3 gradi di vincolo. — (3x0)

A questi dobbiamo aggiungere i gradi espressi dalle cerniere esterne — (+2x2)

a: appoggi/carrelli — (1x0)

r: numero di corpi rigidi articolati dalla cerniera interna

Se ho n corpi rigidi articolati dalla cerniera, la cerniera esprimera tanti gradi di vincolo quanti sono i corpi
rigidi -1 (usato come riferimento) moltiplicato x2 (perché per ogni corpo rigido articolato elimina i due
gradi di liberta e traslazione relativa) — 1x(2x(2-1))

Quanti corpi rigidi riconosciamo in questo sistema di corpi? 3 (AB, CB, AB — catena)

Gradi di liberta complessivi nel piano: 9 — (3x3) — 3x0

Quante cerniere esterne riconosciamo? 1 — +2x1

Quanti appoggi/carrelli esterni riconosciamo? 1 — +1x1

Quanti vincoli interni riconosciamo? 3

(C: articola corpi AB e CB, A: articola corpi CA e AB, B: articola corpi CB e BA)

A e B eliminano gradi di liberta complessivi della struttura rispetto ad un riferimento assoluto, ma sono allo
stesso tempo vincoli interni perche articolano fra di loro attraverso cerniere interne, due corpi.

Quanti corpi rigidi sono articolati da queste cerniere interne? In C: 2, in A: 2, in B: 2 — 3x(2x(2-1))

I gradi di liberta sono eguagliati dai gradi di vincolo, e quindi questa e la condizione necessaria affinche
questa struttura sia isostatica.

Arco con catena parzialmente rialzata

Quanti corpi rigidi riconosciamo? 5 (le cerniere in D ed E non articolano solo il semiarco con la catene ama
interrompono ogni semiarco in due quarti di arco).

Gradi di liberta complessivi nel piano: 15 (3x5) — 3x0

Due cerniere esterne — +2x1

Non abbiamo incastri o carrelli

Dobbiamo guardare alle cerniere interne: in C(2) — (2x(2-1)), in D ed E(3) — (2x(3-1))

Il numero dei gradi di liberta ¢ maggiore dei numero gradi di vincolo — struttura labile
C'¢ la condizione necessaria, ancorché sufficiente che sia una volta labile (il numero dei radi di liberta e

maggiore a una unita del numero dei gradi di vincolo).

Dobbiamo immaginarci un cinematismo. — unghia (DC-CE-ED) come corpo rigido che puo traslare
nell'ambito dei piccoli spostamenti perché le porzioni di arco AD ed EB possono ruotare in A ¢ in B.

Valutare quali di questi sistemi di corpi risulta essere isostatico, labile o iperstatico.

C E

E D
1.
A B
E D

C

@ Es.1 Iperstatica 1 volta

Semicerniera: un corpo rigido la percorre senza essere
interrotto.

Cerniera D unisce due soli corpi rigidi

F

D_
B

Es. 2 Iperstatica 1 volta
D

Es. 3 Labile 1 volta

- =3

Es. 4 Labile 1 volta

3
A
e 4. E
£



Concetto di schema statico
Nome che diamo al modello fisico matematico con cui vogliamo descrivere la struttura che stiamo
analizzando/progettando.
Per analizzare il comportamento di una struttura ¢ necessario formulare un modello meccanico semplificato
ma verosimile — schema statico, che deve comprendere: (elementi che servono per qualificarlo)

e ladescrizione della geometrica dell'elemento strutturale

e ladescrizione delle condizioni di vincolo esterne ed interne

e ladescrizione delle azioni applicate alla struttura

N.B. In questa accezione, ¢ possibile formulare, per la medesima struttura, differenti schemi statici in
funzione, ad esempio, delle differenti condizioni di carico a cui puo essere sottoposta o del differente grado
di approssimazione dello studio.

Edificio a due maniche monopiano

Durante la sua vita utile, quest'architettura a quali azioni sara soggetta?

Possiamo immaginare un carico distribuito gravitazionale sul trasverso, e un carico orizzontale puntiforme
sul ritto-trasverso (effetto del vento che la struttura di facciata riporta al nodo strutturale superiore)

Ci proponiamo di realizzare due schemi statici: uno che discuta l'equilibrio alle sole forze verticali, e un
altro che discuta l'equilibrio alle sole forze orizzontali.

Capire come si comporta il mio organismo strutturale a fronte di carichi verticali e orizzontali.

Caso carichi verticali: perche il carico qualifica lo schema statico?

Perche se sto considerando un carico verticale, ha senso considerare esplicitamente la struttura di
controvento? No perché € vocata unicamente all'equilibrio dei carichi orizzontali; sarebbe tempo perso
includerla nel modello matematico che sto pensando per i carichi verticali.

15 gradi di liberta, e 14 gradi di vincolo — struttura una volta labile

Ognuno di questi campi potra assumere il cinematismo di un pendolo inverso.

Non posso scrivere uno schema statico labile perche poi non posso applicare le leggi dell'equilibrio, allora
introduco carrellino che non corrisponde a vincolo reale, ma e¢ un vincolo ideale equivalente perché prenda
il posto di quello che nell'edificio sono le due diagonali, e che non includo per semplicita.

La modellazione fisica e matematica € un atto creativo che segue il progetto e che non necessariamente deve
sere la foto del progetto. E' 1a libera interpretazione meccanica del progetto, funzionale agli obiettivi.

Se voglio considerare la condizione di carico forza F orizzontale, a questo punto conviene esplicitamente
includere le diagonali, perché servono per garantire 'equilibrio sotto un carico orizzontale.

Se lascio sotto una cerniera, la struttura sara una volta iperstatica.

Posso farla diventare isostatica lasciando una sola diagonale, e mantenere cerniere interne.

Vincoli in materiale elastomerico

Esempi di vincoli reali che traducono in materiale, pratiche costruttive in vincoli ideali visti fino ad ora.
Struttura in cemento armato precompresso

Passerella Garfagnana dell'ingegnere Riccardo Morandi

Arco conosce alle imposte e alla chiave di volta tre cerniere, ed e in calcestruzzo armato.
Vincolo ideale: pallino — cerniera interna

triangolino — cerniera esterna
Oggetto con materiale specifico che sia in grado di replicare esattamente le forze reagenti che quel vincolo
reale attendiamo possa esprimere.
In questo caso nel dettaglio strutturale abbiamo 1'unione tra struttura di fondazione, piede del semi-arco, e la
cerniera (tubo d'almine riempito di calcestruzzo armato con barre d'armatura); fuori abbiamo fazzoletti in
lamiera, unite a barre trasversali intorno alle quali passano barre longitudinali piegate per assicurare che
l'elemento possa trasferire forze orizzontali e verticali ma che lasci libere in prima approssimazione la
rotazione.

Ogni materiale ha sua approssimazione pitt 0 meno brillane di vincoli ideali.



Esercizio

Sistema di due corpi rigidi (un ritto ¢ un traverso)

Schema statico che vuole schematizzare la struttura di una pensilina

Modello matematico che definisce il nostro universo di interesse alla sola pensilina.

Gli eventuali altri elementi strutturali che compongono 1'architettura li tradurremo con vincoli reali

Dato problema matematico dobbiamo ricercare uniticita della soluzione, un problema progettuale non ne
prevede solo uno ma molteplici.
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Come determinare le forze reagenti espresse dai vincoli modulo e verso, in modo che il sistema complessivo
sia in equilibrio

Determinare forze reagenti espresse dai vincoli
DETERMINAZIONE DELLE REAZIONI DEI VICOLI ESTERNI DI UNA STRUTTURA ISOSTATICA

della quale sia stato definito, quale sistema piano, lo schema statico e la condizione di carico
Procedimento solutorio:

1. Controllo della condizione di isostaticita della struttura. Valutazione dei gradi di liberta e dei
gradi di vincolo; controllo della efficacia dei vincoli e della eventuale condizione di vincolo
anomala.

Ogni corpo nel piano ha 3 GDL (2 traslazione + 1 rotazione)

Ogni corpo nello spazio ha 6 GDL (3 traslazione + 3 rotazione)
GDV: limitano la possibilita di movimento del corpo.

Dobbiamo definire i vincoli, quindi la possibilita di ridurre i GDL

2. Definizione di un sistema di riferimento ortogonale, con i relativi versi positivi per le forze ed i
momenti.

3. Connotazione, con lettere (A, B...), delle sezioni di vincolo della struttura e di tutte le altre
sezioni singolari (cerniere interne, sezioni di deviazione d’asse, sezioni di applicazione di forze o
coppie ecc...).

4. Determinazione della risultante delle forze distribuite sulle parti della struttura che non contengono
elementi di articolazione.

5. Scomposizione di tutte le forze applicate alla struttura secondo gli assi coordinati.

6. Eliminazione di tutti i vincoli esterni e loro sostituzione con le rispettive reazioni vincolari (Ha,
VA, Ma ; HB, VB, MB....).

Il numero delle reazioni incognite risulta pari al numero dei gradi di liberta della struttura svincolata, (GdL >
3).

Un nuovo disegno rappresenta ora la struttura priva dei vincoli esterni e soggetta alle reazioni vincolari oltre
che alle forze e coppie date. Il verso delle reazioni vincolari ¢ scelto liberamente (piu spesso concorde col
sistema di riferimento).

7. Scrittura delle equazioni di equilibrio
Ad ogni grado di liberta della struttura svincolata corrisponde una equazione di equilibrio.
Si scrivono pertanto:
3 equazioni corrispondenti ai 3 gradi di liberta della struttura complessiva (equazioni generali)
> H (sommatoria forze orizzontali) = 0 (spostamento secondo x)
>V (sommatoria forze verticali) = 0 (spostamento secondo Y)
> M (sommatoria dei momenti) = 0 (rotazione della struttura intorno ad punto qualsiasi del piano.
(GdL — 3) equazioni corrispondenti ai gradi di liberta delle articolazioni interne della struttura (equazioni
ausiliarie).
Per le cerniere interne si ha:
> M =0 (rotazione di una qualsiasi delle due parti della struttura confluenti sulla cerniera, intorno ad essa).
8. Risoluzione del sistema delle equazioni e determinazione delle reazioni incognite.
L’eventuale segno negativo di una reazione vincolare (forza o momento) indica che essa ¢ di verso
opposto a quello assunto all’atto della eliminazione dei vincoli.
9. Un nuovo disegno rappresenta ora la struttura con le forze e le coppie date e con le reazioni
vincolari indicate con il verso effettivo coerentemente al segno dei risultati.
Le forze sono possibilmente rappresentate in scala; i valori numerici delle forze e delle coppie sono riportati
a fianco dei simboli che le rappresentano, tutti col segno positivo
e Si cerca conferma, per quanto possibile, del segno e del valore delle reazioni vincolari (di quelle
risultate nulle, in particolare) interpretando la funzione dei vincoli in rapporto alla condizione di
carico data. Si cerca di riconoscere, ad esempio, quale spostamento produrrebbero i carichi se la
struttura acquisisse un grado di liberta per la soppressione di un vincolo e si verifica se il verso
della reazione di quel vincolo ¢ tale da opporsi a quello spostamento.



L'imposizione dell'equilibrio e la determinazione delle sue condizioni

La progettazione ci permette di introdurre il killer dei gradi di liberta; ogni volta che ne eliminiamo uno,
abbiamo un prodotto di scarto — reazioni vincolari (forza che genera altre forze, e che genera un momento,

che aggiunto ad un altri momenti, fanno si che siamo in grado di imporre l'equilibrio.

Come determinare le forze reagenti espresse dai vincoli modulo e verso, in modo che il sistema complessivo

sia in equilibrio
Esercizio 1

Y Loorpo viqido —— 3 GdL = 3Gdv

A ve B . Sistema dh J\‘}e\'\mﬂo

eslorgo pogilivo

“ arlesiano
L.

INCOGNITE FORMAL! (wn modulo e vergo) DEL MO PROBLEMA
0 TRE £QUAZONI CARDINALL dells, STATICA

RXA‘HA\A L
=

/Sﬁéﬁ&“@m SFx:0 XH=0 Har0 ——— ) Ha=0
5 /(7

PUNTO DI APPLICAZION®
V=0 +VA+V3-P=O

!

, DV
[ Rre-V8 TMa=0 -Pu+Ve (atb)=0 ——2)Na:*Pa j

\MOBULO POTIEATO 0«+|=

)
o

[ =]
+
o

p
Pp A l B Pa — — Analiti dimenionale (onicai dh migua)

arb P [N]-[m] _[N][m]

e % " mI[m] (w1

- Conlrollaire. il vergo
(Soppamendo un GV dka, voltar)

l - Rgorvere e eq di equibibrio

m%{nubmo

TH=0
IUw Per
L \\(n =V-o B% E\E > ~olows|

N orano S Ma-0 % q+§g b o [o=0]
( p)

Esempi di determinazione delle reazioni vincolari

SH-0 — =0
SV=0 — V,+V,-P=0
A B SM,=0—V,-b=0

SV=0—+V,+V,—P=0[V, =P] A

V,+V,—P=0 [Va=P/2
V,-2a-P-a=0 [V, =P/2




Esercizio 2
Sostituire al carico uniformemente distribuito la risultante, determinandone il baricentro.

Verso pari al verso del carico

Modulo pari al modulo del carico per la lunghezza lungo la quale il carico ¢ distribuito , e dato che la retta
dazione passa per il baricentro, dista una lunghezza pari ad L/2 sia dal punto A che dal punto B
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Esempi di determinazione delle reazioni vincolari
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Risoluzione per via analitica

1)>H=0 m H,=0

2)Yv=0 ® V, +V,-ql=0

MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

= PR ...
JF:qf
A 1C
Ha [y, B [ V,
Considerazioni:

partendo dalle equazioni generali, senza
conoscere i valori di a e b, non e
possibile determinare a priori il verso
delle reazioni vincolari V, e V;;

esso varia al variare

della posizione dell'appoggio B, ovvero
del parametro a. (vedi Esempi 3.2)

X
Risoluzione per via andlitica
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MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Esercizio 4

Edificio residenziale, a due piani, a manica singola che richiede una grande terrazza, con uno sbalzo di 6m
per godere della vista sul tevere.

Minimizzare ingombro strutturale su filo facciata in maniera da godere della vista su S.Pietro.

Schema meccanico che riproduca in maniera approssimata il comportamento della struttura di piano
Faccio riferimento ad un corpo rigido su semplice appoggio, con sbalzo, soggetto a carico uniformemente
distribuito q, avente risultante qL agente su una retta d'azione che dista dagli estremi A e C di una
lunghezza | metri.

Impogone dell eyulbbro e b defermnasione delle ge. conshstori.
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Esercizio 5
Determinare le azioni vincolari di una struttura ad arco isostatica

Sistema deorze eqénhbruto
2 eopple di braccl che & dnnulano

p e p e p 8

f

©
Py

A AL Al
e ® 2
i b Y b i b
| h | h | ‘ n '
- YH-0 Ha+He =0 ——— N Ha=-He 0 Ha: B
am:m%griggg“xsmo V-0 Va-P=o0 — > DVa- Ha h

x £Mas0 -Pa-He-h=o —vs)Hs.

Cosa posso desumere dalla prima equazione?
Non si puo desumere che Ha e HB siano = 0
Sappiamo che hanno lo stesso modulo, ma con verso opposto — Ha = -Hs

Esercizio 6

Unico corpo rigido rettilineo ma inclinato di un angolo o sulla direzione orizzontale, figurandoci che sia una
scala appoggiata ad un muro e soggetto al peso proprio di una persona che sale lungo la scala, per cui
abbiamo parametrizzato la distanza del peso applicato rispetto ad A (pari ad a) e rispetto a B (pari a b).



DETERMINAZIONE DELLE REAZIONI VINCOLARI IN UN SISTEMA DI CORPI
(n corpi rigidi con vincoli esterni ed interni)

Esercizio 1
Sistema di due corpi rigidi vincolati esternamente dall'incastro in A e il carrello in B ed internamente fra di

loro attraverso la cerniera in C.
- R o
e 5&1 ;
;s Lineq aistacco 1 H:
Ve t Va

-

Xx

Si scrive I'equazione di equilibrio alla rotazione attomo al punio C:

Risoluzione per via anglitica Abbiamo 3 equazioni

s Fig b
in 4 incognite: per e L B e
risolvere il sisterna 4) sz- O mV,-b-ab 5 0 Equarione ausiliaria
OcCome scrivere

Linea di distacco 1

E> Lunica incognita presente nell'equazione e V;

1) D H=0 m} H, =0 i s .
Vi Vs ausiliana. N.B. laver fracciato la linea di distacco in modo tale da racchiudere
- 5 i o] interamente una delle due parti di struttura separate dalla cemiera, ha avuio
2] Z V=0 # ""‘A g VB qa qb =0 per conseguenza che I'equazione di equilibrio alla rotazione infomo alla

cemiera non ha infrodotto ulteriorn incognite .

i
3) ZMF\ =0 ‘AA +W, ,(q+b]_qq.g_qb-‘ q+%}:0
\

Risolviomo ora il sisterna di 4 equazioni in 4 incognite:

1) Hy=0 Geometria, vincoli, e azioni sono i tre elementi fondamentali dello
= schema statico. I punti A B e C sono i punti in cui o la geometria, o
2) Va+V;—qa-gb=0 i vincoli o le azioni cambiano.
3 a b) o e : . : :
) M, +V;-(@+b)-qa- 5 —-gb-{a+ EJ =0 Ho il sistema di riferimento, la mia struttura, ho denominato i punti
b singolari con lettere latine.
4 V;-b-ab- BT 0 C'¢ un carico uniformemente distribuito q che attraversa entrambi i
_ gb L L = ab | corpirigidi AC e CB.
dilicton Ajfodone: 1= o i 2 =75 799 Dopo aver determinato 'isostaticita della struttura attraverso i gradi
~di vincolo e i gradi di liberta, ridisegno la struttura con una linea di
dalla eq. 3) siticava : M, =99 (a+b) distacco che includa i cori rigidi, e la separi dai vincoli esterni.

Quando un carico distribuito attraversa un vincolo interno ¢ consigliato sostituirlo con le forze risultanti, ma
considerando delle forze risultanti parziali, delle parti di carico distribuite su ogni singolo corpo rigido.
Immaginando virtualmente che il carico distribuito sia interrotto in corrispondenza del vincolo interno.

Non obbligatorio — consiglio per ridurre la complicazione dei carichi

Al posto dei pittogrammi dei vincoli sostituiamo le reazioni vincolari che quei vincoli impotenza esprimono.
E dato che non ne conosciamo modulo e verso li ipotizziamo.

(VB) (VA) verticali (HA) orizzontale

Momento reagente ¢ MA

Contiamo le incognite formali del nostro problema, ovvero le reazioni vincolari che non conosciamo in
modulo e verso. Matematicamente questo problema in prospettiva di risolvere le tre equazioni della statica ¢
detto una volta indeterminato.

Le tre equazioni cardinali della statica non sono matematicamente sufficienti per determinare 4 incognite.
Dobbiamo includere ulteriori condizioni: occorre scrivere un equazione ausiliaria.

Quali condizioni di equilibrio mancano? Equilibrio relativo tra i corpi.

Dobbiamo ancoro assicurarci che i due corpi non traslino/ruotino fra di loro.

Tracciamo una seconda linea di distacco (include parti della struttura di cui vogliamo discutere 1'equilibrio).
— passa dai vincoli esterni e da quello interno (due alternative AC o CB)

Consideriamo corpo CB (per evitare di calcolare piu forze)

Al posto della cerniera in C segnero le reazioni vincolari interne che quel vincolo potenzialmente puo
esprimere (non le conosco, ma ipotizzo modulo e verso di Vc e Hc).

Utilizzare come polo C, perche passano le reazioni vincolari delle due nuove incognite (Vc e Hc)

Commenti:
e 6 incognite — 6 equazioni (3 statica e 3 equilibrio)
e [n virtu della scelta del polo in cui discutere l'equilibrio dei momenti relativi, vediamo che I'eq 6) ¢
una nuova equazione in cui ci sono solo incognite “vecchie” — Equazione ausiliaria della statica



Se fossimo interessati a tutte le reazioni vincolari (interne ed esterne), tutte le equazioni sarebbero utili;
se fossimo interessati unicamente alle reazioni esterne, 1'equazione 4) e 5) non sarebbero piu utili.

Riassunto procedimento

Traccio la linea di distacco che passa per l'interno, e per un vincolo esterno (solo per vincoli, non pud
tagliare il corpo rigido).

Ridisegno la parte di struttura.

Se sono interessato alle reazioni esterne scrivo solo I'equazione ausiliaria, e perche sia tale ¢ I'equazione di
equilibrio dei momenti, valutati nel vincolo interno. Possibilmente ponendo come polo, quello che coincide
con il vincolo interno, perché elimina le nuove incognite.

Esercizio 2
Areco a tre cerniere
Arco con carico uniformemente distribuito applicato sull'orizzontamento

m
A Bl @anl_- B
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Denominazione dei punti singolari con lettere latine

Due corpi rigidi articolati con cerniera interna con chiave di volta: 6 GDL e 6 GDV (struttura isostatica)
Sistema di riferimento globale

Ridisegno la parte di struttura compresa nella prima linea di distacco (separa l'insieme dei corpi rigidi
dall'esterno, quindi dai pittogrammi dei vincoli esterni).

Divido carico q nelle due parti applicate sui due corpi rigidi

Imposto reazioni vincolari e quote

4 reazioni vincolari incognite (Va, Ha — VB, HB) — abbiamo bisogno di un equazione ausiliaria che
possiamo procurarci perché ¢'€ una cerniera interna da cui possiamo far passare una linea di distacco.
Poiche¢ la figura ¢ perfettamente simmetrica per geometria, condizioni di vincolo e condizioni di carico, sara
indifferente considerare CB o AC.

Consideriamo semiarco CB (linea di distacco arancione), ridisegno la struttura ipotizzando Vc ed Hc

(in totale ora abbiamo 6 incognite — 6 equazioni: 3 ne discutono I'equilibrio assoluto, 3 quello relativo)
Tre equazioni di equilibrio + equazione ausiliaria (utile quando valuta equilibrio dei momenti nella cerniera
interna perche annulla i momenti).

Valutazione equilibrio momenti intorno ad A e C

Verifica dimensionale e del verso

Osservazioni conclusive:

Le reazioni vincolari orizzontali confermano che l'arco ¢ una figura spingente.

Inoltre la forza orizzontale non dipende dalla forma dell'arco, poiché monta e luce rimarrebbero le stesse.
(nessun raggio di curvatura influenza I'andamento della forza)

Tutte le monte dell'arco hanno in comune di avere una monta (m) e una luce (1) unici due parametri rilevanti
alla determinazione delle reazioni vincolari orizzontali.

La spinta dell'arco dipende unicamente dal rapporto luce-monta.

La spinta diminuisce all'aumentare della monta, al denominatore (inversamente proporzionali) —
andamento iperbolico

(Architettura gotica, Cattedrale di Chartres)
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Quanti corpi rigidi riconosciamo in questa struttura?

E' unico o separato?

La struttura ¢ isostatica? Qual ¢ il cinematismo che immaginiamo?
Guardiamo alla geometria: ci sono tutti i dati per valutare eventualmente dei bracci e definire la geometria?
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Obiettivo posto: determinare stato meccanico dell’elemento strutturale trave, in tutte le sue parti
(flusso delle forze interne che fluiscono all'interno del canale serbatoio).

La trave

Definizione: con il termine di “trave” (o solido di De Saint-Venant, 1855) si indica un corpo solido nello
spazio tridimensionale/elemento strutturale in cui una dimensione risulta prevalente sulle altre due (¢
molto maggiore delle altre due, di almeno un ordine di grandezza superiore).

Es. le matite sono delle travi (occupa porzione di spazio, la sua lunghezza 15¢cm € molto maggiore delle altre
due dimensioni, diametro 7mm). Rapporto tra lunghezza e altre dimensioni circa 20.

Altre condizioni:
La trave ¢ definita come un solido generato da (roto-translazione) una figura piana € (generatrice),
tratteggiata in bianco e nero, che si sposta mantenendosi perpendicolare alla traiettoria del suo baricentro G
(direttrice), tratteggiata in rosso; e in ogni punto di quest'ultima, la generatrice rimane perpendicolare alla
medesima.
Perche deve essere perpendicolare? Se il piano varia la sua giacitura, il solido non sara piu generato per
semplice traslazione, ma risultera in un volume con strizioni e allargamenti.
Non per forza la direttrice deve essere un segmento retto.
La generatrice:
* puo variare gradatamente;
» deve mantenere dimensioni piccole: - rispetto al raggio di curvatura r della direttrice;

- rispetto allo sviluppo 1 della direttrice.

Dall'elemento tridimensionale a quello monodimensionale
Una trave € caratterizzata da:

« la sua linea d’asse, coincidente con la direttrice;
* le sezioni Si, coincidenti con le posizioni successive della figura generatrice.

Condizione per cui una dimensione ¢ prevalente:

Dimensioni caratteristiche della generatrice (rettangolo, la cui maggiore dimensione ¢ il lato a, deve essere
sempre molto piu piccola di 1, lunghezza rettilinea/curvilinea della direttrice, minore del raggio di curvatura
della direttrice).

Se la direttrice ¢ retta il suo raggio di curvatura ¢ infinito.
Se il raggio di curvatura ¢ finito dobbiamo preoccuparci che a sia molto piu piccolo di .

Possiamo approssimare la generatrice a quei solidi che hanno una direttrice che varia gradualmente
Il rapporto incrementale di a su z € molto minore di 1

Se passo da z1 a z2, a varia da al a a2

Variazione di z molto piu grande della variazione di a da/dz <<'1

Vantaggi nel definire questo particolare solido

Primo vantaggio
Il primo attiene alla rappresentazione di questo elemento strutturale

Possiamo dare al solido di De Saint-Venant una rappresentazione tridimensionale

In virta del fatto che sia una successione di generatrice lungo la direttrice, posso dare una rappresentazione
unifilare (line like).

Posso affermare che una trave ¢ semplicemente la sua direttrice (segmento rosso).

Se il volume tridimensionale 1’ho fatto diventare varietd unidimensionale, ogni direttrice in questa opera
tridimensionale diventa zero dimensionale.

Ognuno degli infiniti punti che stanno sul segmento rosso qualifica una generatrice (traccia su piano sezione
perpendicolare alla direttrice) li chiameremo sezioni della trave (S).

Geometricamente nella rappresentazione unidimensionale, la sezione ¢ unicamente definita dalla sua
posizione nello spazio.

Tute le sezioni da S1 ad Sn hanno la sezione quadrata

Associamo a quei punti una caratteristiche ulteriore alla loro posizione (geometria della sezione), ma al di
fuori della rappresentazione geometrica che le stiamo dando.

Elemento strutturale che non ¢ un solido di De Saint-Venant: setto murario, volta, cupola

Se riduciamo il setto murario ad una serie di maschi murari, potrebbe essere considerato una trave

Secondo vantaggio

Dalla struttura reale al modello trave

La teoria della trave permette di risolvere in maniera semplificata problemi reali complessi; 1’errore
commesso con la semplificazione ¢ tanto maggiore quanto piu il problema si discosta dalle ipotesi del
modello.




Elementi strutturali assimilabili ad una trave

1. Pilastro in calcestruzzo armato prefabbricato di un capannone industriale, in particolare fusto (parte
inferiore) e baionetta (parte superiore).

Due ringrossi localizzati che servono per supportare travi longitudinali (mensole tozze) non sono una trave.
In prima approssimazione tutto il pilastro puod essere visto come solido di De Saint-Venant.

2. Variazione localizzata di sezione dovuta al coprigiunto in una unione bullonata.

3. Copertura terminal aeroportuale Stoccarda, 1990 (ispirata ad alberi)

Pilastri ad albero, nel loro insieme non sono considerati travi, ma singolarmente si.

Non puo essere considerato trave il nodo (non risponde ai requisiti di De Saint-Venant

4. Trave in acciaio del palazzeto dello sport — Torino

Trave ad altezza variabile (copertura capannone industriale) aumenta 1’altezza in modo graduale.
Condizione di gradualita per la legge di variazione delle sezioni.

Ci sono punti angolosi (rossi), il raggio di curvatura della direttrice ¢ nullo.

Complessivamente possiamo considerarli in prima approssimazione delle travi, ma localmente qualcun’altra
si occupera dei dettagli.

5. Sezioni non ortogonali alla linea d'asse.

6. Aula magna Facolta di Economia e Commercio — Torino

Dimensione longitudinale confrontabile con una dimensione della sezione.

altezza sezione trasversale travi proporzionale alla loro luce.

Strutture di piano correnti con travi (luce ordine di grandezza maggiore dell’altezza della trave) ¢ sempre
vero tranne per la particolare trave tratteggiata in rosso (altezza di 3m, contro una luce dell’ordine dei 12m) -
non puo essere considerata una trave (chiamata trave parete, si confonde con un elemento che ha due
dimensioni preponderanti sulla terza, come un setto murario.

Nella maggioranza dei casi 1’architetto puo fare ricorso al concetto di trave per sviluppare modello
matematico in grado di aiutarlo nella concezione strutturale preliminare dell’intero organismo strutturale.
L’equilibrio di un tratto di trave

Se una trave soggetta a n carichi applicati (concentrati o distribuiti, agenti o reagenti) ¢ in equilibrio, perché
lo sia pure qualsiasi suo tratto (compreso in una ideale linea di distacco ld passante per la generica sezione
Si ) nella sezione devono essere applicati una forza e un momento risultanti delle forze applicate nel
restante tratto.

Forze applicate su corpo rigido, specificato come trave, rappresentato con una linea ¢ punti (sezioni)
Sul corpo rigido agiscono delle forze, alcune sono forze agenti e altre reagenti. (Tutte forze applicate
all’esterno della trave).

Obiettivo: determinare le forze interne in corrispondenza della sezione generica i-esima

Si puo considerare una linea di distacco ld, che passa per la sezione di nostro interesse (laddove voglio
determinare forze interne). — tagliare idealmente il corpo in corrispondenza della sezione di interesse.

Posso usare condizione di equilibrio per affermare che dentro la sezione iesima dovranno agire delle forze
che suppliscono idealmente alle forze blu che non stiamo considerando per garantire 1’equilibrio/ oppure che
sono delle forze la cui risultante e momento risultante sommato alle forze verdi garantiscono 1’equilibrio.
Nella sezione dovranno per forza essere applicate forza R e momento M che garantiscono equilibrio delle
forze verdi, che equivalgono alle forze blu che non ho piu considerato.

Le forze blu hanno il compito di equilibrare le forze verdi che sto considerando.

R ed M devono compensare il lavoro di F5, F6, F7

R non puo che agire nel baricentro della generatrice.

11 punto di applicazione di R in un corpo che non ¢ una trave/solido di De Saint-Venant non possiamo
individuarlo, perché non puo essere ridotto ad una linea (unifilarmente).

Utile scomporre R ed M nelle componenti rispetto ad un sistema di riferimento

Scomporre R ed M rispetto a sistema di riferimento agganciato all’inclinazione della sezione nello spazio.
Ha due assi che definiscono piano generatrice e terzo asse perpendicolare che coincide con la direttrice,
secondo asse del solido.

Comunque sia orientata la trave nello spazio, potro sempre valutare forze interno mettendomi in questo
sistema dei riferimento che si orienta come ¢ orientato 1’elemento strutturale del solido.

Obiettivo: definire sistema di riferimento per valutare componenti della forza interna R e momento
interno M che sia di piu facile comprensione rispetto al sistema di riferimento generale universale
cartesiano ortogonale finora utilizzato.

Chiamiamo le componenti di R e di M valutate rispetto a questo particolare sistema di riferimento locale,
caratteristiche di sollecitazione (internal forces) perché descrivono in maniera semplice ¢ immediata lo stato
della sollecitazione della trave in quel punto, la richiesta meccanica che il sistema induce nella trave, in
quella particolare sezione.
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Caratteristiche di sollecitazione

Sono dette Caratteristiche di Sollecitazione (CdS) le componenti di R e di M in un particolare sistema di
riferimento cartesiano ortogonale x y z detto “locale” perché riferito al piano della sezione.

Per indicare sistema di riferimento locale dobbiamo fare riferimento ad una trave e ad una sua eventuale
giacitura.

Trave che ha linea direttrice rettilinea orientata secondo asse X (trave orizzontale)

Come definiamo sistema di riferimento locale?

In virtu della definizione del solido di De Saint-Venant se uno degli assi segue la direzione della direttrice
avro un asse perpendicolare al piano e il secondo completa una terna destrorsa positiva.

Per convenzione, 1’asse che coincide con la direttrice viene chiamato z, 1’asse perpendicolare al piano viene
chiamato x, e l'asse che completa la terna destrorsa positiva viene chiamato y.
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Procedimento:

Imposto una direttrice

Fisso il punto in cui avviene la sezione S1

Determino punto iniziale (0) e punto finale (1)

Definisco gli assi z, X, y in base al sistema di riferimento universale cartesiano destrorso
Facciamo passare una linea di distacco per la sezione (S1) di nostro interesse

La faccia che chiamiamo pesitiva ¢ quella che viene bucata da asse z per uscire dalla trave

La faccia che chiamiamo negativa ¢ quella che viene bucata dall’asse z per entrare dalla trave

Su faccia positiva i versi sono positivi quando concordi con gli assi
Su faccia negativa i versi sono negativi quando discordi con gli assi
Verso N positivo perché concorde con z su faccia positiva
Verso T positivo perché concorde con y su faccia positiva

Verso N (dalla faccia negativa) ¢ positivo perché concorde con z su faccia negativa
Verso T (dalla faccia negativa) € positivo perché concorde con z su faccia negativa

Si chiama N: componente che sta per sforzo normale (ortogonale alla faccia) - in inglese axtial force (A)
Si chiama T: componente che sta per sforzo tagliante - in inglese shear force (T)

Convenzione di segno per M sapendo che il momento risultante ha una sola componente, perpendicolare
all’asse x piccolo — sempre regola mano destra

Su faccia positiva M ¢ positivo, equiverso ad x

Su faccia negativa M ¢ negativo perche di verso opposto ad x

M chiamato anche momento flettente
Ma momento torcente

La trave permette di definire le forze interne perché ne consociamo a priori il punto di applicazione e perché
a queste forze assegnamo nomi che dipendono dall’orientamento della faccia.




La configurazione deformata della trave

Terzo vantaggio

Queste 3 caratteristiche di sollecitazione (3 nel piano ¢ 3 spazio) hanno la suscettibilita di essere interpretate
grazie alla dualita statico-cinematica.

Statico: forze

Cinematico: effetto che le forze esterne hanno sul corpo (gli spostamenti, tradotti in gradi di liberta)

Per valutare l'effetto delle forze interne (caratteristiche forze sollecitazione) dobbiamo rimuovere ipotesi di
corpo rigido, ma figurarci trave come corpo deformabile, che per effetto delle caratteristiche di
sollecitazione interne perda la sua forma.

Possiamo stabilire il rapporto tra caratteristiche sollecitazione e la forma che assume il corpo sotto le
medesime.

La trave, corpo elasticamente deformabile, si deforma sotto 1’effetto dei carichi e la configurazione
deformata di un suo concio puo essere desunta dalla sola conoscenza delle caratteristiche di sollecitazione,
sotto 1’ipotesi che le sezioni (generatrice) possano ruotare o traslare, ma rimangano piane e senza perdere la
loro forma.

Ipotesi: pur perdendo la sua forma, il solido la perde solo nei termini di forma della direttrice, chi non
cambia la sua forma ¢ la generatrice.

Soggetto a carichi (forze rosse), per effetto delle forze reagenti e agenti nasceranno caratteristiche di
sollecitazione che faranno cambiare la forma solo della linea direttrice, mentre le generatrici continueranno
ad avere la stessa forma di prima (generatrice piana, non esce dal suo piano, non perde rapporto
dimensioni, continua d essere perpendicolare alla direttrice.

Se la direttrice cambia forma e localmente ruota, la generatrice le va dietro) le generatrici possono ruotare
per andare dietro alla direzione della direttrice, possono traslare lungo lasse, ma non possono perdere la loro
forma e debbono rimanere figure geometriche piane.

La direttrice si ¢ inflessa, ma viceversa il rigato trasversale (le generatrice) ¢ dietro la direttrice, quindi puo
ruotare, ma continua a rimanere un segmento retto.

Relazioni tra sollecitazioni e deformazioni

Trovare relazione tra la causa caratteristica della sollecitazione e l'effetto del cambiamento della forma

Applico ad entrambe le sezioni una forza — a parte centrale si inflette

Momento flettente M: deformazione flessionale (determinante nel tracciamento della configurazione
deformata della trave)

Ha come effetto quello di incurvare la direttrice

Caratteristica di sollecitazione che ha I’effetto deformativo maggiore e che vediamo ad occhio nudo
Indurre rotazione delle sezioni (ruolo Mflettente)

Sforzo normale N: deformazione assiale (determinante solo quando M=0)

Ha come unico effetto la variazione in lunghezza della direttrice (allungamento o accorciamento)
L'effetto sul campo di deformazione del momento flettente lo vedo ad occhio nudo, quello dello sforzo
normale ¢ di ordine di grandezza minore

Sforzo di taglio T: deformazione dovuta a taglio (generalmente trascurabile per la trave)

Due forze orientate verso opposto )questa componente di deformazione ¢ ancora piu piccola delle
precedenti) la componente di deformazione a taglio € quasi sempre trascurabile nelle travi, ameno che la
trave sia soggetta solo a taglio.




Questa relazione tra le componenti della forza interna e gli effetti deformativi ci permettono di dare un senso
fisico alle caratteristiche di sollecitazione.

Ognuno di M, T, N ha un solo effetto sulla deformazione dell’elemento strutturale.

Morfologia 09/11

Le caratteristiche di sollecitazione sono forze che garantiscono 1'equilibrio a fronte di carichi applicati
agenti o reagenti, ¢ lo garantiscono per ogni sezione della trave.

Se cambio la sezione di interesse e quindi la linea di distacco, posso includere nuove forze all’interno della
linea di distacco, e variando le forze agenti o reagenti, varieranno anche le caratteristiche di sollecitazione
affinché facciano equilibrio.

Queste caratteristiche di sollecitazione sono intimamente connesse con lo stato deformato della trave
considerato non pitt come corpo rigido ma deformabile.

Come determinare modulo (intensita)e verso delle caratteristiche di sollecitazione in ogni sezione della trave
Il punto di applicazione delle caratteristiche di sollecitazione € noto a priori: punto sulla direttrice della
trave che denota sezione di interesse.

Sono anche note a priori le direzioni, corrispondenti agli assi del sistema di riferimento locale.

Le caratteristiche di sollecitazione sono quelle che assicurano con modulo e verso, I’equilibrio del tratto di
trave compreso tra la sezione di interesse ¢ il vincolo interno ed esterno di cui siano gia note le reaioni
vincolari.

Le condizioni matematiche che impongono I’equilibrio sono le medesime che applicavamo ad ogni singolo
corpo rigido: le equazioni di equilibrio

La differenza ¢ che invece che applicarle ad ogni singolo corpo rigido, le applicheremo ad ogni singola parte
di corpo rigido che passa per la linea di distacco della sezione di nostro interesse.

All’architetto interessa che 1’equilibrio sia soddisfatto in tutte le sezioni della trave, perché 1’equilibrio
implica che il tratto di trave sia sempre in equilibrio.

In un segmento infinito ci sono infiniti punti/sezioni possibili (che dovranno essere in equilibrio)

Le caratteristiche di sollecitazione non saranno solo incognite in un punto ma le possiamo esprimere come

variabili dipendenti (funzioni) che varieranno al variare della posizione della sezione.

Sara quindi necessario trasformare le tre equazioni di equilibrio in tre funzioni

Nella normale funzione — y variabile dipendente che dipende da variabile indipendente (x)

In questo caso avremo N, T, M variabili dipendenti, che dipendono dalla variabile indipendente (z)

(z): variabile indipendente del sist. di rif. locale che qualifica la posizione della sezione lungo la trave
y=1x) — N, T, M = {(z)

Diagramma delle caratteristiche di sollecitazione

Esempio_trave fuori spessore di solaio (diagramma panettiere)

Richiesta di prestazione meccanica: sollecitazione (dlomanda) — declinata in N, T, M

Curva rossa: diagramma del momento flettente (andamento di una delle caratteristiche di sollecitazione
lungo la trave) — valore che assume momento flettente al variare della variabile indipendente z

Attraverso la determinazione diagramma caratteristiche sollecitazione saremo in grado di progettare la trave
affinché in ogni sua sezione il momento resistente superi o sia almeno uguale al modulo del momento
sollecitante.

Il momento resistente sara determinato dalle dimensioni della sezione ¢ dal materiale che la costituisce.
Sulla base delle caratteristiche di sollecitazioni possiamo procedere a dimensionare le dimensioni della
trave e a definirne I’ingombro strutturale.



DETERMINAZIONE DELLE CARATTERISTICHE DI SOLLECITAZIONE
DI UNA STRUTTURA ISOSTATICA

Schema staticol

Trave in semplice appoggio vincolata da una cerniera in A e un carrello in B
Solido di San Venant — conosce una sola dimensione z

N, T, M di variabili z (non saranno piu infinitamente continue e derivabili)

Condizione necessaria alla determinazione caratteristiche sollecitazione ¢ che della struttura siano gia note
le reazioni vincolari (sistema di forze reagenti e agenti a cui le caratteristiche delle sollecitazioni devono
fare equilibrio)

Procedimento

1) Denominare con una lettera latina maiuscola tutte le sezioni della trave in cui capita qualcosa di
staticamente o geometricamente rilevante ai fini della definizione di sistema di riferimento locale

(inizio trave: A, fine trave: B, C) o dove I'asse della trave conosce deviazioni delle linee d'asse).
Riconoscere le sezioni aiuta a riconoscere i sottodomini entro i quali le funzioni (N, T, M) saranno continue

2) In ognuno di essi (sottodomini AC e CB) identificare una generica sezione (S1 ed S2) che li comprenda
S1 punto di sezione generico che puo andare tra Ae C

S2 punto di sezione generico che puo andare tra C ¢ B

La linea di sezione non pud passare per C perché non c’¢ un vincolo.

(Se faccio passare la linea di distacco in C, dovro calcolare N, T, M di S1e N, T, M di C).

3) Definire sistema di riferimento locale per ogni tratto di trave

Traslare sistema di riferimento (terna di assi destrorsa positiva) con origine in A, anche in C (in ogni sezione
singolare iniziale di ogni segmento di trave).

E' importante che il sistema di riferimento trasli dall’origine e ruoti a seconda della direzione della trave

Se I’asse subisce una variazione, anche la terna di assi la subira ruotando su x.

4) Per ogni sotto dominio avremo un dominio di esistenza che avra come limite di esistenza, il valore che
assumera la variabile indipendente (z)

SOTTODOMINIO AC SOTTODOMINIO CB

DOMIONIO DI ESISTENZA: A<SiSC—0<Z <L) DOMINIO DI ESISTENZA: C<S2<B —>0<Z <L)

5) Ridisegnare la prima sezione S1 della struttura della trave
Affinché il concio di trave sia in equilibrio per forza dovranno agire N, T, M per garantire 1’equilibrio

6) Ipotizziamo modulo e verso di N, T, M (per convenzioni li ipotizzo positivi)

7) Procediamo scrivendo equazioni equilibrio
Sommatoria forze secondo z =0 — N=0

Sommatoria forze secondoy =0 — T-P/2=0
Sommatoria momenti intornoax=0— M—-P/2-z=0

8) Per ogni equazione di equilibrio abbiamo solo una incognita (M, N, T) e sono tutte funzioni di (z)
I1 loro modulo e verso dipende dall’equilibrio e da (z).
9) Trasformo le equazioni in funzioni

N(z)=0 Funzione costante — valore costante nullo
T(z)=P/2 Funzione costante — valore P/2
M(z)=Pl/4 Funzione polinomiale di primo grado (grado polinomio massimo esponente della potenza )

10) Siamo pronti per realizzare diagrammi di N, T, M nel sotttodomio AC
Predisporre i tre riferimenti cartesiani

N) Qualunque si il valore di z, N ¢ sempre nullo

T) Qualunque sia il valore di z, T ¢€ pari a P/2

M) qualunque sia il valore di z, Ma= 0 e Mc=P1/4

Ripeto lo stesso procedimento considerando la porzione di trave tra S2e B
Ridisegno solo questa porzione, insieme al sistema di riferimento in C
Disegno N, T, M (discordi rispetto alla terna di assi)

Dispongo le quote

Equazioni di equilibrio e funzioni

Aggiungere i risultati sul diagramma completandolo
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DETERMINAZIONE CARATTERISTICHE SOLLECITAZIONE STRUTTURA ISOSTATICA

CON CARICO DISTRIBUITO LUNGO TUTTALALUCE L

Schema statico 2
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Sezioni singolari in A e B
Una sola sezione generica compresa tra due sezioni singolari A B
Sistema di riferimento locale in A

Traccio linea di distacco comprendente punto A e passante per St — ridisegno la struttura

Determino la risultante del carico q della porzione del carico considerata

Funzione polinomiale M3: calcolo derivata prima per trovare punto massimo ¢ minimo di un momento

Funzione taglio = funzione derivata del momento

Dove la funzione del momento conosce massimo o minimo, la funzione taglio deve conoscere uno zero.
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Tracciamento dei diagrammi di sforzo normale, taglio, momento flettente di una scala in calcestruzzo

armato, con carico uniformemente distribuito

Trave a ginocchio in calcestruzzo armato gettato in opera per la rampa-scala di un edificio.
Supponendo che i pianerottoli e la rampa siano sostenuti da unico corpo trave che conosce due deviazioni
della linea d’asse, e supponendo che la trave risulti essere appoggiata muri di testata

Trave in semplice appoggio (carico uniformemente distribuito q lungo la proiezione della scala)
Caratteristiche sollecitazione trave

Considero alcune forze per il sistema di riferimento locale, oltre che per il globale

(in questo caso scrivo le equazioni di equilibrio seguendo il sistema di riferimento globale)
Devo spostare le forze valutate per il sistema di riferimento locale

Schema 1 (16.11)
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Schema 2
In alcuni casi meglio “traslocare” tutto nel sistema di riferimento LOCALE.

Carico uniformemente distribuito q tra sezione A ed E

Ginocchio sezione C
Tratto inclinato fino a B
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MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Schema 3
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Tracciamento delle caratteristiche di sollecitazione utili nel leggere un oggetto di architettura
Sistema di trave notevole (gherber e portale a tre cerniere)

Esercitazione
Determinazione delle caratteristiche di sollecitazione in sistemi di travi comunque inclinate
a La sedia zig zag, Rietveld, 1934
. Oggetto di design composto figurativamente da un unica lastra in legno.
Costruttivamente risulta avere varie assi unite (assiemate) e degli incastri a coda di rondine (immaginati da
Rietveld del disegno).

"
eferboalice 1ye.h beej]

Modello fisico matematico (sistema statico) (geometria, sistema di carico ...)

Dalla struttura al modello di carico
1) Dalla struttura nello spazio al modello piano;
Le assi di legno possono essere considerate travi (ordine di grandezza inferiore alla direttrice)
. ———————— 2) individuazione della linea d’asse delle travi;
400 mm

Forza peso F
efbaicento s
: 3) condizioni di applicabilita della teoria delle travi; (lo considero come solido di Sant Venant)
4) dal vincolo reale al vincolo ideale;
\ { 500 mm Dobbiamo vincolare una sola trave monolitica.
i Problema: passare dal vincolo ideale (oggetto fisico che vincola la sedia al pavimento) al vincolo esterno

) che abbiamo imparato a conoscere (incastro, carrello, cerniera...)
A Uno dei piedini ha una superficie inferiore gommata che sviluppa attrito (impedisce traslazione verticale e
Tete  Scames orizzontale) - elimina due gradi di liberta (assimilabile a cerniera esterna)
Altro piedino in acciaio (non gommato) attrito molto basso - non riesce ad eliminare traslazione ortogonale
al pavimento, lascia libera la sedia di traslare orizzontalmente (carrello ideale)
+ una possibile condizione di carico (persona seduta) forza stimata F= 60daN
Definisco lunghezze (parametrizzate in forma simbolica: L ed L/2) ed angoli 45°
5) la condizione di carico.
Obiettivo: determinare reazioni vincolari (condizione necessaria per tracciare diagrammi delle
caratteristiche di sollecitazione)
I diagrammi ci raccontano, sezione per sezione, il loro stato di sollecitazione (modulo e verso delle forze
interne)
Caratteristiche sollecitazione sono due volte significative ... 09:04
Momento flettente induce curvatura nell’asse della trave

I gomiti della diagonale particolarmente sollecitati (momento flettente massimo modulo nei gomiti)
Dimensioni trave costanti — prestazioni meccaniche costanti a fronte di sollecitazioni variabili (maggiori
nei gomiti)

Rietveld ha previsto una vite infilata alla traditrice per connettere gomito e listello.

Calcolo delle reazioni vincolari

Controllo condizione isostaticita GAL=GdV — GdL 3n 3
Sistema di riferimento globale

Inserire lettere nelle sezioni singolari

Determinare risultante di forze distribuite

Scomporre le forze applicate secondo le direzioni degli assi X e Y.
Sostituire vincoli con reazioni incognite

>H=0—  Hs=0— HB=0

>V=0— VA+VB-F=0—>  VB=F2
>MB=0— FL2-VaL=0— Va=F-Va=F/2
Nuova figura con le reazioni trovate

H
F
G El
D
A . I8
TV;_ VJ H5




MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

ESEMPIO APPLICATIVO 1

Torre per telecomunicazioni Montjuic

Barcellona, 1989-1992

Progettista: S. Calatrava

Altezza: 136 m; inclinazione del fusto: 17° struttura portante in acciaio

Vediamo se I’andamento dei diagrammi delle caratteristiche di sollecitazione ha ispirato Calatrava nel
progettare questa struttura.

Predimensionamento qualitativo

Il dimensionamento della struttura ricalca fedelmente 1’andamento del diagramma di momento flettente

Condizione puntuale di tangenza tra struttura di vincolo
e trave che differiscono per condizioni di caricoForza
peso P che corrisponde al peso di tutti gli elementi
portati (ripetitore e torroidale)Alla forza P si aggiunge
carico qCombinare effetti di due azioni combinabili
simultaneamenteDiagramma momento
flettenteMassimi in corrispondenza dei gomiti, € un
punto in cui si annulla (come la sedia
Rietveld)Sommare le due funzioni e ri-diagrammare
tuttoCorrispondenza tra andamento del momento
flettente e 'andamento della dimensione sezione
trasversaleMomento flettente cresce (cresce
sollecitazione)

Calatrava fa crescere dimensioni sezione trasversale
facendo cosi crescere le risorse

ESEMPIO APPLICATIVO 2

Lampada da terra Montjuic, 1990
Design: S. Calatrava

Dimensioni L/W/H: 50.8x45.72x190.5 [cm]

Esercizio:

1. determinare un possibile schema statico piano;
2. calcolo delle reazioni vincolari;

3. calcolo delle caratteristiche di sollecitazione;
4. tracciamento della deformata qualitativa;

5. discutere alla luce dei risultati ottenuti:

a. il dimensionamento della struttura;

b. la stabilita della struttura (vincoli monolateri)



Le TRAVI GERBER
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Campata: distanza tra due vincoli esterni consecutivi
Schema statico che vede due travi distinte, vincolate da una cerniera (in corrispondenza del pilastro P13) in
corrispondenza di P14 e P15 considero due carrelli

A) Prima possibilita:

Struttura isostatica composta da due travi in semplice appoggio, con carico uniformemente distribuito
B) Seconda possibilita:

Considerare la trave come corpo unico

Soluzione progettuale: trave continua, non conosce soluzione di continuita quando attraversa vincoli di
campata

C) Terza possibilita

Schema statico isostatico che preserva continuita della trave sull’appoggio centrale

Trave Gerber

Isostatica: 6GDL 6GDV

La cerniera interna non coincide piu con il carrello esterno, ma ¢ spostata in campata (P15-P14)
Potrebbe indifferentemente migrare nell’altra campata

Quali sono i criteri per cui possiamo definire una trave Gerber?
Quali sono i vantaggi meccanici di una trave Gerber rispetto alla soluzione di travi continue o giustapposte
in semplice appoggio?

Soluzione A e C: possiamo ottenere comportamento isostatico
Per comportamento meccanico interno in termini di diagrammi di caratteristiche di sollecitazione no,
(fornito delle slide).

Definizione trave Gerber
E una trave isostatica ad asse rettilineo (non necessariamente ad asse orizzontale ma abitualmente si), che
per soddisfare la qualita di isostaticitd richiesta, deve essere vincolata da almeno una cerniera e da un

numero che puo essere variabile di carrelli e di appoggi (denotato con n) e che pero (condizione necessaria
siano collocate nelle varie campate avendo gia definito la campata

% < ; ancorché sufficiente perché sia isostatica), deve includere n -1 cerniere
quale porzione di trave compresa tra due vincoli esterni consecutivi.

interne che non siano disposte in corrispondenza degli appoggi, ma che
% é é Condizione che assicura che numero GDL corrisponda numero di GDV



Dobbiamo includere delle restrizioni al progetto di una trave Gerber: che sui rifanno alla posizione nelle
campate delle n-1 cerniere interne:

Non ci debbano essere piu di due cerniere interne in corrispondenza delle campate interne

E non piu di una nelle campate di bordo, essendo quelle che includono uno dei vincoli di estremita

Esempi di scorretto posizionamento delle cerniere

®

@ Struttura labile per eccessivo numero di cerniere

Owerres O GdL=9
o dom e @%ﬁ Cin

@ Struttura labile per scorretto posizionamento delle cerniere.

D S W A . . % GdL= 12

Gdv =12

@ Struttura labile per scorretto posizionamento delle cerniere.

GdL=9

% a % % % " % GdV =10

Struttura iperstatica per numero insufficiente di cerniere
(3 appoggi consecutivi con trave in continuita).

Collocare la cerniera interna in una campata ¢ strumento per garantire che nel punto della cerniera interna,
quella trave, 1i’ non sara soggetta a momento flettente.
Possiamo pilotare il comportamento meccanico dell’architettura

Analisi quantitativa della trave Gerber

Condizione di carico varia

(carico uniformemente distribuito sulle prime due campate e parte della terza) e una forza concentra
Campate con lunghezze differenti (le due di estremita luce pari a 4/31, la centrale centrale 21)

Tre carrelli esterni in C, B, D.

Due cerniere collocate nelle due campate laterali distanti 1/3 dai carrelli centrali

Simmetrica per condizioni di vincolo, ma non per condizioni di calcolo

Determiniamo diagrammi delle caratteristiche di sollecitazione

Nel caso in cui il carico distribuito percorri i vincoli, lo dividiamo in carico trave che insiste su AE e su ED
Abbiamo bisogno di due equazioni ausiliarie (che possiamo procurarvele facendo passare linee di distacco
per le due cerniere interne)

Equazioni cardinali della statica

Due equazioni ausiliarie

Due linee di distacco passanti per la cerniera interna e vincolo esterno

Determino due reazioni vincolari, che sostituisco nelle equazioni cardinali della statica ottenendo le altre
reazioni vincolari verticali

Per semplificare le espressioni, assumo che F=ql/2

Trovo moduli reazioni vincolari verticali

Ridisegno struttura, in debita scala grafica, le reazioni vincolari dei quattro vincoli esterni

Esempio Area di carico/lunghezza di carico/area di pertinenza/lunghezza di pertinenza

Cerniere interne collocate in corrispondenza dei carrelli

In questo particolare caso il modulo delle reazioni vincolari puo essere determinato con una scorciatoia che
non considera I’equilibrio, ma la geometrica della struttura.

La reazione vincolare sara chiamata ad equilibrare forza risultante di quella parte di carico distribuito che sta
a cavallo del vincolo.

Questa scorciatoia € vera solo se sono nella condizione di avere tante travi in semplice appoggio
giustapposte. — Si sottostimano pero le reazioni vincolari



MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Esempio di trave Gerber
O T NE— " 3, 12, 12

..............

1) szO HAZO
2) Y'vV=0 VA+VB+VC+VD—qI—§qI—F={}
4 5 8 10, .17
M, = ~V - =l+gl-2l-=ql-1+ -2+ V- —I-F-—1=0
3)2(: A3+q63q+n+33 6

- ~ =

;\‘ H, lql‘.: lSqI!3 lF LY Y
"\“ JI' s l
Je M W -
linea distacco 1 TR R
linea aistacco £
Linea di distacco 1
H lq| H Equazione ausiliaria 1
g M. =0 el diog  |ie—2
IVA 1 v, Z E = q > A= AT S
Linea di distacco 2
He F Equazione ausiliaria 2
i "N LB =0 Vo=
Ve v, >Mg =0 B" 5= 8= 5

Noti i valori di Vae VB li sostituiamo nelle equazioni generali determinando le restanti incognite Vc ¢ Vb

5 7
Dall’eq. 3) si ricava A= = ql + - =
23 1 N.B.: Il verso della reazione
Dall'eq. 2) si ricava Ve =—ql —— V¢ non & determinabile a
12 12 priori.

Al fine di semplificare le espressioni di V¢ e Vp, come caso particolare, si assuma F = gl/2.
Si avra, quindi:

ve® [wo? M- [w-a




MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Studio e calcolo delle caratteristiche di sollecitazione

1) Individuazione di un sistema di riferimento locale per ogni tratto di trave compreso tra 2 sezioni singolari.
In questo caso, essendo la trave rettilinea, 1’orientamento del sistema di riferimento locale resta invariato in

ogni tratto.

2) Individuazione di una generica sezione si per ogni tratto di trave compreso tra due sezioni singolari.

Sezione Si

2 N=0
—T-qgl/2+gz=0
—T=-gz+ql/2

YMyq=0 —>M-ql/2-z+qz*[2=0

T
q"’QI >M=Fz)=-qz2[2+ql[2-z
N ;
952< |
(A) =] > My=0
—)ME=0
.
o d:»f / 1 _ql?
g
> T=-ql/2 —=0-z=-aMZz==|="—
E=-dl/ dz g [ 2] 8
Sezione S2
Y SH=0 - N=0
ls—-x >Yv=0 —T-ql/2+ql+gqz=0
z - T=-qz-ql/2
ql ! qz2
YMgo =0 —>M—E-(I+Z)+q!-(§+z]+7=0
0<z<l3 .
® © - M=f(z)=-qz [2-ql/2-z
—>TE=-q/2 . SO |
— T =-5ql/6 dz 2
aM / ) i .
—_— =0 Zz=— ascissa fuori dal dominio
—>Mg=0 dz 2
2
2ql 2
- Mc T d°M -—q concavita del diagramma
dz2 verso il semiasse negativo di
M
Sezione S3
TH=0 —>N=0
y ____gl_____ql,{i_q)_(l_(D M, V=0 4T-%’-%+qf+%’+qz:o
L—-x Alzzzzc 11—. ) - T=-qz+25ql/24
Z 1 ECRl N Moo m_ 9 (4, ) 150
ql/2 15q1/8 T Ol eSS e i B
Joi (5! a (1 qz? _
I /3 2 +ql (E+z]+§[€+2)+7_0
Q<z<2 2 2
(©) o) _f(z)-_9%° 259  2qI"
, > M=flz)= CER
s 2q/
> T =25q1/24 Mg =0
- Tp =-23q//24 2
b ql/ Mp =59
36
LM, 2
dz 24
—)-qy-:[}—)z:?-—s-!—)M(z:g-SAI]:—“l 12
dz 24 24 128



Esempio slide confronto:

MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Sezione S4
M,
Lv C'ie " SH=0 —>N=0
; X .‘?1 I an'ftl yYV=0 —T+qgl/4=0
T 1ok —>T=-ql/4
—>M=fz)=+ql/4-Z
0 <z<lf2
(H) (B)
0 <Z<lif2
B (H)
—)Té=—qff4 —)MB=U
—> -;'}-_! =-— q;f)l"l- 2
—-> My = L.l
8
Sezione S
¥ CMxN lQlf.Z i
7 . ﬁ, I H Iqlfd
L
Yn
/2 ZH: 0 = N=0
(g]szslﬂ TV=0 —>T+ql/4-ql/2=0
i > T=ql/a
(Ensr*_::g SMg=0 —>M-ql/4-(l2+2)+qlj2-Z=0
> M=F(X)=ql/4-X-ql%/8
2
ql
> Ty=al/4 M=
- Tc=ql/4 - Mg =0
Sezione Se
Tracciamento dei diagrammi di sollecitazione
v M, C_) 9z’ ql/2 TH=0 —-N=0
! iz CA '-_t.,i,_l_ﬂ YV=0 —>T+ql/d—ql/2-gZ=0
z " | , _"' ]qua > T=ql/4+qZ
E""z"f"i ....... .I?i.._:g _______ i f2 SMg=0 M- % (1+2)+ %; [ % P z‘]+ % 2.0
/2 2
M=fX)=-qZ“/2-ql/4 -z
R A > M=f(X)=-qz2[2-ql/
@© @ © (o
> T=ql/4 g ops
S T =7qI/12 i g
——=0—>2Z =——ascissa fuori dal dominio
—> MG =0 dz 4
5ql 2 d’m concavita del diagramma
- Mp = __36 - e o verso il semiasse negativo di

M
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MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

OSSERVAZIONI

*Il diagramma di taglio varia linearmente nei tratti di trave in cui il carico ¢ distribuito, mentre si mantiene
costante nei tratti non gravati da carico distribuito.

*[l diagramma di momento varia con legge parabolica nei tratti gravati da carico distribuito, con legge
lineare negli altri tratti.

*In corrispondenza dei punti in cui il taglio si annulla, il momento presenta un massimo relativo.

Il momento ¢ nullo in corrispondenza delle cerniere interne.

Momento flettente nullo in E e G (abbiamo

) lllllllllllllllllilllllllllllllllllllll.ll.llllllllllllllllllllll s

E

T B \ . . .
A c D 7 N A collocato li le cerniere interne) sgraviamo le

H

G ¥ ..
15q//8 | 37qi24 alfa sezioni dal momento flettente
i Seconda implicazione che deriva ancora dalla

posizione della cerniera interna in campata: a
23ql al fronte della posizione di carico, avendo imposto

1 a che il momento flettente si annulli in questi
i [[[{E'[aé punti, ed essendo punti in campata, ci rendiamo

Padl ]ﬁ

b 7ql _m ' — conto che il momento flettente cambiera segno
e - %’ in campata.
i Momento flettente fortissimamente negativo in
corrispondenza degli appoggi intermedi
M) :
oK e
128
Obiettivi
Confrontare la soluzione alla Gerber con soluzione continua e serie di travi in semplice appoggio (A,B,C)
per cercare di trarre indicazioni progettuali
Stabilire sotto quali condizioni potremmo progettare una trave continua, ¢ studiarla quantitativamente come
una trave Gerber il piu possibile simile alla trave continua che abbiamo progettato
Confronto trave Gerber-trave continua
Diagrammi identici per andamento ma valori
Applicazione numerica per la condizione di carico esaminata: particolari
q = 1000daN/m; I=3m; F=1500daN Identica per geometria, condizioni divincolo
esterne e condizione di carico
1) Trave Gerber 2) Trave continua Qualitativamente 1’andamento dei diagrammi
1000 daN/m daN/m delle caratteristiche di sollecitazione e molto
#1500 daN A +1s00dan  simile. Differiscono nei punti in cui il momento
z " E = DTF G ?B ¢ P a8 flettente si annulla
15”” o ] Phs =g I TR 1310 daN I 5750 daN l sss0dan T460daN Nella trave Gerber ho deciso dove posizionare la
cerniera, nella trave continua il momento si
annulla piu in 13, e non e piu imposto dal
. Jmﬂ daNm 1750 daNm progettista ma risulta da condizioni meccaniche
My, ‘ : "iji ) (equilibrio e congruenza). ' '
R Al Il momento della trave Gerber nella cerniera si
2883 daNm—"" - 1120 daNm . annulla ¢ indipendente dalla condizione di carico.
St i Nella trave continua I’annullamento dipende
2410 daNm P ; 1 . exer e qe
I - [ A _ dalgli equilibri di congruenza.
M;) g a 2 Ty A it =2
1905 daNm-/ €91 daNm - Le lievi traslazioni degli O nella funzione

momento, non sono trascurabili
Il momento massimo negativo in corrispondenza del carrello in D raddoppia (trave Gerber)
Sia la trave Gerber che quella continua condividono: momento ora positivo ora positivo man mano ci
spostiamo verso la sezione della trave.
Se fossimo cosi bravi da azzeccare la posizione della cerniera in maniera che coincida con il momento nullo
(cerniera nella trave Gerber) avremmo costruito trave Gerber per lo meno dal punto di vista statico.
La trave Gerber sembra essere un buon candidato ad emulare una trave continua.



MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Casi di cedimento

‘ Spostamenti - Trave in c.a. — sezione 20x30 cm

1) Trave Gerber

; 1000 daN/m 1s00dan Trave Gerber: abbassamento massimo in mezzeria, il
j\ 1/;\\ i A\ AJII[[[[[[[[III[[[[[[[[[[[[[[[HI[HI[HH]M i doppio della trave continua perché le cerniere interne
& © 7 A AT A = E =C 02§ & 2B50no vicnoli che non consentono traslazioni relativi,
1 ma consentono rotazioni relativa che implica

abbassamenti sempre maggiori. Cuspidi in
corrispondenza cerniere interne

U,=14.2mm 2) Trave continua La trave continua non presenta cuspidi, ma curvatura
continua, in corrispondenza degli 0 c’¢ un punto di
. 1000 daN/m 1500daN flesso per definizione. Assenza cuspidi fa si che non
AT - 4 ci sia componente di rotazione che riduce
) ot o 2® deformazione

U,=7.7 mm

Altro caso per cedimento vincolare

Le due travi sono soggette a particolare azione

insidiosa: azioni indirette (che non sono esprimibili

da una forza o carico concentrato, ma dal fatto che

un vincolo esterno si sposta).

Trave Gerber: quando il vincolo esterno si abbassa,

per un momento possiamo figurarci che il vincolo

non ci sia piu, quindi diventa labile - cinematismo

Sotto I’effetto di cedimento vincolare, una struttura

isostatica conosce cinematismo, senza deformarsi

La trave perde il suo asse rettilineo.

Trave continua: struttura iperstatica, rimane una
volta meno iperstatico

L

Applicazione numerica: cedimento vincolare in D - Uyp = 2.5 cm Trave in
c.a. —sezione 20x30 cm

def

Trave Gerber
U"‘ID

Abbassamento vincolo trascina con se la trave che

1110 daN i Trave continua ¢ P EOn S
f 645 daN continua ad essere soggetta all’equilibrio

_l 1620 daNm i 1350 daN l Implica variazione curvatura
,L_ T B Ty ' 2590 daNm Cedimento vincolare induce a momento flettente

& A AR A
S e U

Vincolo reale: esempio calcestruzzo armato

Cerniera interna trave Gerber in calcestruzzo (chiamata unione a mezzo legno dai falegnami)

Problema durabilita dell’opera

In corrispondenza delle selle Gerber il calcestruzzo non ¢ piu in continuitd, ma presenta una lama d’aria
(giunto) via preferenziale in cui il calcestruzzo viene attaccato dagli agenti atmosferici.

Coperti da apparecchi in acciaio

Necessita di manutenzione, oppure non si progetta come Gerber ma come trave continua.

TRAVE GERBER / TRAVE CONTINUA SINTESI DELLE DIFFERENZE

& Abbassam Problemi costruttivi
Punti con == i P =
Calcolo M=0 enti in Cedimenti vincolari e
campata di durabilita
. v R g S Non producono Le terruer: |r|ter||19.
rave semplice eterminati Maggior sollecitazioni sono punti singolari
Gerber (isostaticita) a priori R possibili fonti di
ma solo spostamenti = 2
inconvenienti
Trave Pil complesso | Dipendenti AT Producono sollecitazioni Assenza di punti
continua (iperstaticita) dal carico e spostamenti singolari

Aspetti analizzati

Semplicita o difficolta di calcolo con la quale ¢ possibile determinare i diagrammi di carico e le
caratteristiche di sollecitazione.

Determinazione del momento flettente

Sensibilita dello schema strutturale rispetto ai cedimenti vincolari delle caratteristiche di sollecitazione
Risposta strutturale alle condizioni ambientali: capacita di una struttura di risultare
isostatica/iperstatica/labile, in riferimento alle cerniere interne (punti singolari che possono ammalorarsi).



Analisi trave gerber

Valutare come la trave Gerber non sia solo un'alternativa di progetto alla trave continua, ma puo anche
essere un'alternativa modellistica alla trave continua.

Nell’impossibilita di valutarne quantitativamente il momento meccanico, uso la trave Gerber quale modello
semplificato per studiare in termini di struttura isostatica la struttura che progetterd come isostatica.

Capire in quali termini potremmo progettare una trave continua, € in prima approssimazione restituirla come
trave Gerber, o il piu possibile simile ad essa.

Analisi comparata tra la trave Gerber e una successione di travi in semplice appoggio
Equivalenza dei modelli

Da un punto di vista statico: dell'equivalenza in termini di reazioni vincolari e caratteristiche di
sollecitazione, € possibile formulare un modello equivalente (sotto particolari ipotesi).

Immaginiamo di voler progettare trave continua che risponda alle 4 ipotesi

IPOTESI

1. che la trave continua sia infinitamente lunga (composta da n campate, dove n ¢ infinito)

2. che queste infinite campate abbiano la medesima luce (1)

3. che queste campate siano soggette al medesimo carico (uniformemente distribuito)

4. che la sezione della trave sia costante, (in virtu del fatto che la trave sia continua e iperstatica)
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Alternanza del momento positivo in campata e negativo in appoggio
Il momento negativo in appoggio risulta il doppio del momento positivo in campata.
Momenti in 0, collocati ad una distanza rispetto agli appoggi intermedi di circa 1/51

Se volessimo immaginare una trave Gerber che sia perfettamente equivalente in termini di diagramma del
momento flettente, sarebbe sufficiente costruire uno schema statico che abbia le stesse caratteristiche della
trave continua, ma inserendo le n-1 cerniere, (rispettando le regole di Gerber) ma con posizione a piacere
(non avendo limiti sulla posizione).

Esattamente nelle sezioni che corrispondo agli 0 del momento flettente nella trave continua avremo
formulato una trave Gerber equivalente alla trave continua in termini di momento flettente.

Se conosciamo quale ¢ I’obiettivo a cui vogliamo tendere alla trave Gerber (che sia equivalente alla trave
continua nel momento flettente) posso posizionare le cerniere interne esattamente dove il momento flettente
si annulla nella trave continua.

L’equivalenza ¢ soddisfatta per qualunque condizione di carico?
No, il carico deve essere omogeneo e continuo.

Gli zeri del momento flettente nella trave continua dipendono dall’equilibrio e dalla congruenza.
Nella trave Gerber, il momento flettente ¢ indipendente.



Dal punto di vista della pratica progettuale quali sono le ipotesi piu difficili da rispettare?

“Trave infinitamente lunga” — perché avremo sicuramente delle campate di estremita.

“Tutte le campate della medesima lunghezza” — non sempre ¢ cosi, spesso si hanno esigenze diverse.
Come dobbiamo comportarci?

Bisogna cercare criteri di equivalenza rilassando/negando le prime due ipotesi

Diverse travi Gerber — tutte rispondono ai vincoli che Gerber ci da

Le inseriamo usando il criterio per le travi infinitamente lunghe, dispongo le cerniere ad una distanza pari a
1/5 della luce (1) della campata in cui la vado a collocare.

Dobbiamo attenderci che non riusciremo a realizzare la perfetta analogia tra la trave continua e la Gerber,
perché sto utilizzando un criterio “vecchio” ad una nuova condizione di progetto (solo pit due ipotesi).
Confrontare i tre diagrammi con il diagramma del momento flettente della trave continua, e cercare quale si
avvicina di piu ad essa.

-

C) =>worst P - I <] 7 1 ‘ TIIEA
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Caso C) Il momento flettente delle campate di estremita non ha niente a che vedere con quello della trave
continua. Ha un comportamento meccanico differente nelle campate di estremita: € positivo nella maggior
parte della lunghezza della campata fino alla cerniera che ho usato per forzare il momento nullo.

Caso A) Cerniere interne alle campate di estremita
In questo caso la maggior parte della campata laterale ¢ soggetta a momento flettente negativo, ma vi ¢
comunque una frazione soggetta a momento flettente positivo.

Caso B) Se collochiamo le cerniere interne nella campata centrale, da un punto di vista almeno qualitativo, ¢
molto simile alla trave continua.

Momento flettente negativo nelle campate di estremita e alternanza di momento positivo e negativo nella
campata centrale con due zeri.

Gli zeri del momento nella campata centrale della trave continua, saranno identici alla posizione in cui ho
collocato la cerniera interna della Gerber? No

Non possiamo attenderci che usando il criterio di 1/5 della luce, riusciremo sempre a definire lo schema
isostatica che rifletta perfettamente il problema progettuale iperstatico.

Ma in primissima approssimazione, una delle tre soluzione ottenute con il criterio “vecchio” si avvicina
qualitativamente al diagramma del momento flettente della trave continua. — CASO B

Accorgimenti
- Per trasformare la trave Gerber utilizzando la regola 1/5 della luce, ¢ necessario posizionare le cerniere

interne il piu possibile lontano dalle campate esterne.

Perché dobbiamo stare lontani dalle campate dei estremita? Perché per definizione sono piu lontane dalle
ipotesi (trave infinitamente lunga, esclude le campate di estremita).

- Evitare anche le campate con luci molto piu piccole della media di quelle continue

(non rispetta ipotesi delle campate di egual luce)

Problema progettuale 1 Problema progettuale 2
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Comparare la trave Gerber e N travi in semplice appoggio giustapposte

TRAVI SINGOLE IN SEMPLICE APPOGGIO (s.a.) PREDIMENSIONAMENTO
Mg 2 [M,]
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TRAVE GERBER (g)
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Trave a tre campate con cerniere interne in corrispondenza dei vincoli B e C
Nella trave Gerber le cerniere interne non corrispondono piu ai vincoli intermedi B ¢ C ma si trovano ad una
distanza (Ic) daB e C.

Il diagramma delle travi in semplice appoggio e il diagramma del momento flettente ¢ sempre positivo
(sbilanciato nel semipiano positivo).

Il diagramma della trave Gerber ¢ bilanciato, in parte nel semipiano positivo e in parte in quello negativo.
Puo essere immaginato come un diagramma delle travi giustapposte, in corrispondenza di B, se I’avessimo
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Ms = momend JoweciTANTE
M =momenfo ReSiStente

2,5m 3m n{erpiano
Msa Mg — h =50 um
| M8a < MR — h= 40 om —> RIDUZIONE INGOMBRO STRUTURALL
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L=10m L-10m
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&
o TRAVE GERBER con (RO,
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La sollecitazione media delle sezioni nella trave Gerber ¢ minore rispetto alla sollecitazione media delle
sezioni delle travi in semplice appoggio.

La media dei valori del momento nelle travi giustapposte ¢ a meta circa del diagramma.

Nella trave Gerber, invece, la media dei valori € vicina allo 0, perché i valori negativi e positivi si
compensano.

Nelle travi in semplice appoggio la sezione che lavora di piu € quella di mezzeria, mentre in corrispondenza
di tutti gli appoggi ¢ “rilassata”.
Nella trave Gerber le sezioni tra di loro sono piu “solidali”, ognuna fa qualcosa.

Nelle travi giustapposte, il massimo momento sollecitante ¢ 1/8q1"2
Nella trave Gerber il massimo modulo del momento sollecitante sara minore 1/8ql"2 e sara distribuito in
campata, in corrispondenza dei valori intermedi.

L'altezza della sezione trasversale delle travi giustapposte, ¢ fatta in modo che dia luogo ad un momento
resistente che sia maggiore del momento sollecitante massimo nel suo modulo.

Per le travi giustapposte adotto altezza h grande (chiamata ad esprimere un momento resistente maggiore del
momento massimo sollecitante grande).

Diminuendo il modulo del momento sollecitante, potra diminuire il momento resistente ed anche 1'altezza
della sezione trasversale della trave. (Vantaggio dal punto di vista dell’architetto)



PORTALI E TELAI

Problema progettuale — Galleria commerciale

Obiettivo:

Analizzare un'altra tipologia di strutture che puo essere letta come sistVenant, non riferito a travi che
abbiano la direttrice allineata (Gerber, continue, giustapposte) ma direttrici che non giacciono sulla stessa
retta, a realizzare un insieme costituito da due ritti e un traverso.
Ritti assi verticali e trasversale asse orizzontale
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A A A A

HI ’_‘ /'m«‘gente
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medesimo  Schema.

Caso 1: schema strutturale
trilitico (i due ritti e il traverso
sono tre solidi distinti e articolati
da cerniere interne collocate in
corrispondenza dei gomiti) -
schema labile, reso isostatico
aggiungendo un carrello in
corrispondenza di uno dei gomiti,

Caso 2: portale a tre cerniere
Numero cerniere interne
ridotto ad 1

Cerniera interna collocata nel
punto di sezione della mezzeria
del traverso (puo anche essere
messo in corrispondenza di uno
dei gomiti)

Sobio dAll ARCD a. 3 Carnire.
SIRUTURA  SNGENTE

Caso 3: telaio

Eliminazione della cerniera interna
- struttura 1 volta iperstatica che
realizza la piena monoliticita dei
tre elementi strutturali denominati
ritti e traversi.

da intendere come vincolo ideale
equivalente che garantisce
formalmente 1'isostaticita.

Ci proponiamo di confrontare fra di loro in maniera sistematica, almeno due delle alternative progettuali

2) Portale a tre cerniere: siamo in grado di studiarne ’equilibrio ¢ determinarne reazioni vincolari esterne e
interne caratteristiche sollecitazione che compongono le due travi.

3) Il telaio ¢ equivalente per geometria ma sprovvisto di cerniera interna (la soluzione sara gia data)

Portale a 3 cerniere

Geometria definita con un trasverso e due ritti alti h

Cerniera interna nella mezzeria del trasverso

Condizione di carico uniformemente distribuito q lungo tutto il trasverso

Osservazione: presenta il medesimo schema strutturale dell'arco a 3 cerniere — caratteristiche struttura
spingente (a fronte di carichi verticali, i vincoli esprimono forze orizzontali).

Reazioni vincolari orizzontali inversamente proporzionali alla monta, (in questo caso all’altezza del portale)
La spinta orizzontale dell’arco a tre cerniere non dipende dalla forma dei semi archi ma dal rapporto
monta-luce

In virta della gerarchia dei tre elementi strutturali, possiamo scomporli

Calcolo delle reazioni vincolari
Equazioni di equilibrio
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2. Calcolo delle Caratteristiche di Sollecitazione

: : : 1) Individuazione di un sistema di

U e q riferimento locale per ogni tratto di trave
D L E.« compreso tra 2 sezioni singolari.
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[t 5 2) Individuazione di una generica
A ' sezione s, per ogni tratto di trave

compreso tra due sezioni singolari.
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MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

1
Dall'eq. 3) si ricava vV, = %

, - ql
Dall'eq. 2) si ricava vV, = =
Dall'eq. 1) si ricava H, = al®

' . 8h

N.B. Il valore delle reazioni orizzontali:
« diminuisce al crescere del valore di h;
« aumenta al crescere del valore di /;

el
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Portale a 3 cerniere

4. Tracciamento della deformata qualitativa
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A. cerniera = U,=U,=0
B. cerniera > U,=U,=0
C. cerniera interna = cuspide

D. Assenza di articolazioni = « costante
E. Assenza di articolazioni - « costante
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DIAGRAMMA delie CdS
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MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

Ritti parecchio inflessi

1l trasverso risulta debolmente compresso
Fortemente tagliato, e fortemente inflesso

Convenzione non universale dei segni
N del diagramma delle caratteristiche di sollecitazione
del portale a tre cerniere
Considerato diagramma di N nel semipiano positivo con
segno negativo, (contrariamente a quanto siamo abituati
a fare).

Confronto diagrammi dello schema trilitico con quelli del portale

Portale a 3 cerniere

3. Tracciamento dei diagrammi delle CdS

3

o B

R
ar
8h
[C]
a

ql’
8h

i

NE=3

@
@ &
8h

gl

2

&

Nel caso in cui lo schema statico sia simmetrico rispetto ad un asse (simmetria di geometria,

qP/8
g

R

di azioni e di vincoli), allora anche la soluzione & simmetrica.

In particolare le reazioni vincolari sono simmetriche, i diagrammi di sforzo normale e

W)

momento flettente sono simmetrici e il diagramma di taglio & antimetrico.

Momento flettente: due differenze importanti

Nello schema trilitico i ritti non sono sollecitati, nel portale, invece sono sollecitati man mano che ci
avviciniamo al gomito

Cerniera nel punto di mezzeria del trasverso — scelta che obbliga il momento flettente ad annullarsi

qP/8

Mentre nello schema trilitico vi ¢ un unico elemento inflesso e due elementi compressi, (trasverso, inflesso

e ritti compressi), nel caso del portale a tre cerniere, gli elementi strutturali sono piu “solidali” — trasverso
e ritti variamente inflessi

Proposta: Se la cerniera I’avessimo messa a 1/4 e 3/4 di 1?
Siamo in grado di controllare le sollecitazione lungo il trasverso ed eventualmente equilibrare i momenti

Portale a 3 cerniere: pre dimensionamento

@I N.B. La variazione d'altezza
delle sezioni del portale &
coerente con quella del
momento flettente.

T

positivi e negativi?

Esempio portale a tre cerniere reale

Schema statico di portale a tre cerniere, ma trasverso suborizzontale per seguire le falde
Diagramma di momento flettente
Se ci immaginiamo di disegnare il diagramma modulo momento flettente, I’architettura
adotta travi a sezione variabile, che ricalca la variabilita del momento sollecitante.



(Es. Torre Calatrava)
Confronto Portale a tre cerniere - telaio
Caratteristiche di sollecitazione a confronto

Es.2:Applicazione numerica: cedimento vincolare in B — Uyg= 2.5cm
trave in c.a. — sezione 20x30 cm

1
|
|
| | M
{ Portale a 3 cerniere
|
| \
a - a & a
| Uxm}
| | ]
/ || ® 2957 daNm &
II M
f || Telaio iperstatico
|
| '-.
& ad /'S P
<>
X(B)

Per sforzo e taglio abbastanza analoghi

Per momento flettente no

La traslazione del momento flettente rimane tale

Nel telaio, il bilanciamento tra momento flettente negativo e positivo lo otteniamo attraverso la
progettazione della rigidezza del trasverso e dei ritti.

Confronto rigidezza
Un struttura iperstatica e sempre piu rigida di una struttura isostatica, perché non c¢'¢ piu la cerniera (lascia la
possibilita di rotazioni relative, mentre la continuita di ritti e trasversi, impedisce la rotazione relativa.

Se vogliamo progettare una struttura che a parita di condizioni sia piu rigida, dovremo scegliere quella
iperstatica.

Caso cedimento portale a tre cerniere e telaio (cedimento vincolare elastico orizzontale)
Risposta analoga alla trave Gerber — struttura isostatica.

Per un momento diventa labile (cinematismo), ma non ci sara momento flettente /variazione curvatura delle
travi, — non implica sollecitazione.

Nel telaio il cedimento vincolare elastico comporta uno stato di deformazione, curvatura degli elementi
strutturali

Valore massimo momento flettente che si scontra per cedimento elastico dell’ordine dei 2200daNm

Variante progettuale del portale a tre cerniere

Portale a spinta eliminata (con catena)

Studiare il comportamento meccanico del portale a tre cerniere con spinta eliminata attraverso la catena
In B cerniera interna che articola la catena, con esternamente una catena

L 1. Calcolo delle reazioni vincolari esterne
z
N '______J[q_rf?__ o
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Per determinare reazioni vincolari est
trave, 3 in questo caso (2 semiportali
equilibrio.

MORFOLOGIA E CONCEZIONE DELLE STRUTTURE

erni non sono necessarie equazioni ausiliarie perché I’insieme dei corpi
e lcatena) ¢ vincolato da cerniera e carrello — bastano le equazioni di

Dopo aver determinato le reazioni vincolari esterne, determino anche quelle interne.
Come mai? Ragione che riguarda il tracciamento delle caratteristiche di sollecitazione)
Figuriamoci, partendo dallo schema iniziale, di identificare le sezioni singolari e quindi le sezioni generiche

1.1. Calcolo delle reazioni vincolari interne

‘ 1.2. Calcolo delle reazioni vincolari interne

Linea di distacco 1
Permette di calcolare la reazioni vincolari verticali interne nei nodiAe B

Linea di distacco 2
Permette di calcolare la reazioni vincolari interne nei nodiAe C

)VH=0 —H, +H_=0
Hy A Hg 1) 2H=0 _bHA+Hg=0 )E A (| |
A < - . U T
B‘ 2)2V=0 =V, +V, =0 2}2V70 VC+2 2 5
i i 3)TM =0 —>V,1=0 M sempn el W Uy
| ' “ 2M: - P2
2
o r Dall'eq. 3) siricava = al
Dall'eq. 3) si ricava VvV, =0 a 8h
: Dall'eq. 2) si ricava -Vc =0
Dall'eq. 2) si ricava V,=0
Y q|2
Dall'eq. 1) si ricava e - —
Dall'eq. 1) si ricava H, =-H, 8h
z X
Essendo una trave biconnessa , necessariamente la linea di distacco dovra uscire dalla struttura
Linea di distacco di Ss, passante per la cerniera interna C o passante per il vincolo (cerniera) nel punto A
Per preparami allo studio delle caratteristiche di sollecitazione devo necessariamente determinare le reazioni
vincolari interne, oltre a quelle esterne.
- — sezione Sg qli2
Portale a spinta eliminata poo+ | o
% 2. Calcolo delle Caratteristiche di Sollecitazione e C E H=0 —>N-qgl’°/8h=0
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N.B. Si sviluppa solo la sezione s;.
Per le sezioni s,, s, S5, S4 Si procede come nel precedente esercizio.
- esercizio per l'allievo

A e B vincoli sia esterni che interni
Le due linee di distacco ci portano a s
3. Tracciamento dei diagrammi delle CdS
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N.B. Per travi ad asse rettilineo, incemnierate agli
estremi e prive di carichi esterni agenti direttamente
su di esse (bielle), vale sempre quanto trovato sopra,
e cioé:

N=0; M=0; T=0
(si imanda alla lezione Travature reticolari piane)

crivere 6 equazioni (6 incognite)

Commento sezione S5

a” Reazione vincolare del vincolo interno C (q1"2/8h)

8 Forza ql/2 applicata in A : reazione vincolare esterna
Quando un vincolo ¢ sia interno che esterno, quando si taglia la
linea di distacco si deve fare un “ingrandimento” per capire bene
cosa accade all’interno

L’esercizio conferma

La catena impedisce 1'allontanamento relativo dei piedi dell’arco
Risulta essere soggetta a sforzo normale positivo (di trazione)
Sforzo normale al modulo, pari alla spinta che viene eliminata,
(reazioni vincolari del portale quando non era a spinta eliminata)
La catena non ¢ ne tagliata ne inflesso: elemento puramente teso
Conferma dell’intuizione, a cui possiamo attribuire un valore
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Confronto portale a spinta eliminata - telaio

Es.1.1:Applicazione numerica per la condizione di carico esaminata:
g = 1000daN/m; /=6m; h=7m 4500daNm 4500daNm

Nl ot

N1 = T1 | r M*I
& F 3 A
1770daNm 1770daNm
2730daNm
4 4 4. 387daNm
F Y F h

Confronto portale a spinta eliminata - telaio

Es.1.2: Spostamenti — Trave in c.a. — sezione 20x30cm

(TITITIICN [T .
D E ]
C T a=90°
Portale a 1000 daN/m U, =0,619cm
spinta def
eliminata
A B
; A
3000daN 3000daN
(IR
C D -
1000 daN/m a=90°
U, =0,133cm
Telaio def N
A B
r
3000daN Taomuan &

Riassunto concettuale Secondo Modulo

Solido De Saint Venant — sappiamo stabilire il regime di sollecitazione di una trave o un sistema di travi
(portale, trave gerber)

Acquisizione dellp strumento di analisi, applicato a due sistemi di travi significativi nell’architettura (trave
in semplice appoggio, schema pendolare trilitico, Gerber, e portale a tre cerniere): tipi strutturali che si
fondano sulla trave inflessa.
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ESERCIZIO 1
Portale a tre cerniere identico per geometria e vincoli
No carico diretto verticalmente, ma soggetto a carico diretto orizzontalmente
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ESERCIZIO 2

Differisce nel punto di applicazione e verso della forza applicata F orizzontale (in E e in B)
Non pitl portale a tre cerniere, ma a spinta eliminata

Esercizi per l'allievo con soluzione (2)
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